Perturbation Theorems for Ordinary Differential Equations

AARON STRAUSS AND JAMES A. YORKE*

Department of Mathematics,
University of Maryland, College Park, Maryland

Received July 28, 1965

Consider the following systems of ordinary differential equations:

\[x' = f(t, x), \]
\[x' = f(t, x) + g(t, x), \]
\[x' = f(t, x) + g(t, x) + h(t), \]

where \(f(t, x) \) is continuous, satisfies a Lipschitz condition on some semi-
cylinder, \(f(t, 0) = 0 \), and \(x = 0 \) is uniform asymptotically stable for \((N)\).
Let \(g(t, x) \) and \(h(t) \) be sufficiently smooth for local existence and uniqueness.

Consider the conditions

\((H_1)\): There exists \(r > 0 \) such that if \(|x| \leq r \), then \(|g(t, x)| \leq \gamma(t) \) for
all \(t \geq 0 \), where

\[G(t) = \int_{t}^{t+1} \gamma(s) \, ds \to 0 \quad \text{as} \quad t \to \infty. \]

\((H_2)\): There exists a continuous, nonincreasing function \(H(t) \) satisfying

\[\lim_{t \to \infty} H(t) = 0 \]

such that \(|\int_{t_0}^{t} h(s) \, ds| \leq H(t_0) \) for every \(0 \leq t_0 \leq t \leq t_0 + 1 \).

Then we prove: If \(g(t, x) \) satisfies \((H_1)\) and \(h(t) \) satisfies \((H_2)\), then there
exists \(T_0 \geq 0 \) and \(\delta_0 > 0 \) such that if \(t_0 \geq T_0 \) and \(|x_0| < \delta \), the solution
\(F(t, t_0, x_0) \) of \((P_1)\) approaches zero as \(t \to \infty \). In particular, if \(x = 0 \) is a
solution of \((P_1)\), then it is uniform asymptotically stable. Furthermore, if
\(g(t, x) \equiv 0 \) and \(h(t) \) does not satisfy \((H_2)\), then no solution of \((P_1)\) can approach
zero as \(t \to \infty \).

In the case \(f(t, x) = Ax \), where \(A \) is a constant matrix, the above results

* The second author holds an NSF Co-op. Fellowship.
generalize theorems of Coddington and Levinson [1] and Brauer [2], since (1.1) holds if either \(y(t) \to 0 \) as \(t \to \infty \) or \(\int_0^\infty y(t) \, dt < \infty \). The proof for the linear case is elementary and can be given in a first course in differential equations; therefore, we include it in Section 3.

We give two proofs of the general result. A slight extension of the above is proved in Section 4 with Lyapunov functions. The proof in Section 5 is more direct, does not require Lyapunov's second method, and exhibits quite clearly the need for the asymptotic stability to be uniform. Example 4.5 shows that a vector function \(h(t) \) can satisfy \((H_3)\) even though \(|h(t)| \to \infty \) as \(t \to \infty \). Needless to say, all of the general results of Sections 4 and 5 apply to the special case \(f(t, x) = Ax \) considered in Section 3.

Lyapunov's second method has been employed before to obtain perturbation theorems. One of the best-known results [3, Section 19] is that if \(f \in \mathcal{C}_0 \) and \(x = 0 \) is U.A.S. for \((N)\), then there exists a continuous function \(\eta(x) \), with \(\eta(0) = 0 \), such that if \(\|g(t, x)\| \leq \eta(x) \), then \(x = 0 \) is U.A.S. for \((P)\). This theorem has wide application, and it is probably close to the best possible result for perturbation terms that are independent of \(t \). The difficulty is that it may be hard to determine \(\eta(x) \) because \(\eta \) depends on the Lyapunov function associated with \((N)\). In our theorems, a perturbation term need only satisfy a requirement which is independent of the original system \((N)\).

Krasovskii [3, Section 24] has a theorem in the general spirit of Theorem 4.1 in which he considers perturbation terms that are "bounded in the mean." He is able, however, to conclude only that \(x = 0 \) is stable for the perturbed system. Also, a result similar to the above for \((P)\) was announced by LaSalle and Rath [5]. Instead of (1.1), they use the equivalent (but perhaps a bit harder to verify) condition

\[
\limsup_{t \to \infty} \frac{1}{1 + a} \int_t^{t + a} \gamma(s) \, ds = 0
\]

for some interesting theorems on "eventual stability." Actually, the condition (1.1) seems to have been used only recently—Coppel [4] uses it to obtain several interesting boundedness results for perturbed linear systems.

2. Preliminaries

In \((N)\), \(x \) and \(f \) are vectors in \(E_n \) with \(\|x\| = |x_1| + \cdots + |x_n| \), \(t \) is real, and \(f(t, 0) = 0 \) for all \(t \geq 0 \). We adopt the following convention: every differential equation which we consider shall have a right-hand side which is continuous and sufficiently smooth on

\[D_M = \{(t, x) : t \geq 0, \quad |x| < M, \quad M > 0\} \]
for the uniqueness of all solutions. For \((t_0, x_0) \in D_M\) we denote by \(F(t, t_0, x_0)\) that solution (of the equation being considered) for which \(F(t_0, t_0, x_0) = x_0\).

Definition 2.1. \(C_0\) denotes the class of functions having uniform Lipschitz constants on \(D_M\); \(C_m\) the class having continuous partial derivatives of orders \(k = 1, 2, \ldots, m\); and \(C_\infty\) the class of functions having continuous and bounded partial derivatives of every order on \(D_M\).

Definition 2.2. \(\mathcal{X}\) is the class of continuous, strictly increasing functions \(\rho\) on \([0, M)\) such that \(\rho(0) = 0\).

Definition 2.3. Let \(V(t, x)\) be real valued on \(D_M\). Then \(V\) is positive definite if there exists \(\rho \in \mathcal{X}\) such that \(V(t, x) \geq \rho(|x|)\) on \(D_M\). Also, \(V\) is negative definite if \(-V\) is positive definite.

Definition 2.4. \(V(t, x)\) is a Lyapunov function for \((N)\) on \(D_M\) if

(i) \(V(t, x)\) is positive definite and \(C_1\) on \(D_M\),
(ii) \(V(t, 0) = 0\) for all \(t \geq 0\),
(iii) \(\dot{V}_{(N)}(t, x) = \partial/\partial t V(t, x) + \nabla V(t, x) \cdot f(t, x) \leq 0\) on \(D_M\), where

\[
\nabla V = \left(\frac{\partial}{\partial x_1} V, \ldots, \frac{\partial}{\partial x_n} V \right).
\]

Definition 2.5. \(V(t, x)\) has an infinitesimal upper bound on \(D_M\) if there exists \(\mu \in \mathcal{X}\) such that \(V(t, x) \leq \mu(|x|)\) on \(D_M\).

Definition 2.6. Call the solution \(x = 0\) of \((N)\)

(2.1) stable if for every \(\epsilon > 0\) and every \(t_0 \geq 0\), there exists \(\delta(\epsilon, t_0) > 0\) such that \(|x_0| < \delta\) and \(t \geq t_0\) imply \(|F(t, t_0, x_0)| < \epsilon\).

(2.2) uniformly stable if (2.1) holds with \(\delta\) independent of \(t_0\).

(2.3) asymptotically stable if (2.1) holds and if there exists \(\delta_0(t_0) > 0\) such that or every \(\eta > 0, t_0 \geq 0\), and \(|x_0| < \delta_0\), there exists \(T(\eta, t_0, x_0) \geq 0\) such that \(t \geq t_0 + T\) implies \(|F(t, t_0, x_0)| < \eta\).

(2.4) equiasymptotically stable (E.A.S.) if (2.3) holds with \(T\) independent of \(x_0\).

(2.5) uniform-asymptotically stable (U.A.S.) if (2.2) and (2.3) hold with \(\delta_0\) independent of \(t_0\) and \(T\) independent of \(t_0\) and \(x_0\).

Theorem 2.7 (Massera [5]). If, for \((N)\), \(f \in \mathcal{C}_0\) on \(D_M\) and \(x = 0\) is U.A.S., then there exists on \(D_M\) a Lyapunov function \(V(t, x)\) for \((N)\) such that \(V\) has an infinitesimal upper bound, \(\dot{V}_{(N)}\) is negative definite, and \(V \in \mathcal{C}_\infty\).
3. Perturbed Linear Systems

The following is proved in [1, Chapter 13]:

Theorem 3.1. In the system

\[x' = Ax + \psi(t, x) + g(t, x) \]

let \(\psi \) and \(g \) be continuous on \(D_M \). For small \(|x| \), let \(g(t, x) \to 0 \) as \(t \to \infty \) uniformly in \(x \). Let the characteristic roots of \(A \) have negative real parts. Given any \(\epsilon > 0 \), let there exist \(\delta_\epsilon \) and \(T_\epsilon \) so that \(|\psi(t, x)| \leq \epsilon |x| \) for \(|x| \leq \delta_\epsilon \) and \(t \geq T_\epsilon \). Then there exists \(T_0 \) such that any solution \(F(t) \) of (L) satisfies \(|F(t)| \to 0 \) as \(t \to \infty \) if \(|F(T_0)| \) is small enough.

Brauer [2] has shown that the conclusion of Theorem 3.1 is valid for the system

\[x' = Ax + \psi(t, x) + g(t, x) + h(t, x), \]

where \(A, \psi, \) and \(g \) are as in Theorem 3.1, \(h(t, x) \) is continuous on \(D_M \) and \(|h(t, x)| \leq \lambda(t) |x| \), where \(\int_0^\infty \lambda(t) \, dt < \infty \).

We shall now consider (L) with a condition on \(g(t, x) \) sufficiently general to include Brauer's result as a special case.

Theorem 3.2. Consider (L) where \(A \) and \(\psi \) are as in Theorem 3.1, and \(g \) satisfies (H1). Then there exist \(T_0 \geq 0 \) and \(\delta > 0 \) such that for every \(\tau_0 \geq T_0 \) and \(x_0 \) satisfying \(|x_0| < \delta \), the solution \(F(t, \tau_0, x_0) \) of (L) satisfies \(|F(t, \tau_0, x_0)| \to 0 \) as \(t \to \infty \). In particular, if \(x = 0 \) is a solution of (L), then it is asymptotically stable.

Before proving this theorem, we discuss the condition (H1). It is easily seen that (1.1) holds if either \(\gamma(t) \to 0 \) as \(t \to \infty \) or \(\int_0^\infty \gamma(t) \, dt < \infty \); that is, Theorem 3.2 includes Brauer's result. The following example exhibits the generality of (1.1).

Example 3.3. Define \(\gamma(t) \) on \([0, \infty)\) as follows: for each positive integer \(n \),

\[\gamma(3n) = 1, \quad \gamma(t) = 0 \text{ on } [3n - n^{-1}, 3(n + 1) - (n + 1)^{-1}], \quad \gamma(t) = 0 \text{ on } [0, 2], \]

and \(\gamma \) is linear elsewhere. Then \(\gamma(t) \to 0 \) as \(t \to \infty \) and \(\int_0^\infty \gamma(t) \, dt = \infty \) because

\[\int_0^{3n+1} \gamma(t) \, dt = \sum_{m=1}^{n} \frac{1}{m}. \]

However, given any \(t \geq 1 \), we have \(3n - 2 \leq t \leq 3n + 1 \) for some \(n \), hence \(\int_t^{t+1} \gamma(s) \, ds \leq n^{-1} \), proving \(\gamma \) satisfies (1.1).

It is also easy to see that (1.1) is equivalent to the condition that
perturbation theorems

\[\int_{t_0}^{t_\infty} y(s) \, ds \to 0 \text{ as } t \to \infty \] for every \(\alpha > 0 \); we use \(\alpha = 1 \) for convenience.

We prove Theorem 3.2 with the aid of four lemmas. Lemma 3.6 is analogous to Lemma 1 of [2] and Lemma 3.7 is an inequality of the Gronwall type used in [2].

Lemma 3.4.

\[\int_{t_0}^{t} G(s) \, ds = \int_{t_0}^{t} \left[\int_{s}^{t} y(u) \, du \right] ds \leq \int_{t_0}^{t} \left[\int_{t_0}^{t} y(u) \, du \right] ds = \int_{t_0}^{t} y(u) \, du. \]

Proof.

\[\int_{t_0}^{t} G(s) \, ds = \int_{t_0}^{t} \left[\int_{s}^{t} y(u) \, du \right] ds \leq \int_{t_0}^{t} \left[\int_{t_0}^{t} y(u) \, du \right] ds = \int_{t_0}^{t} y(u) \, du. \]

Lemma 3.5.

\[\int_{t_0}^{t} e^{\sigma s} y(s) \, ds \leq \int_{t_0}^{t} e^{(\sigma + 1) G(s)} \, ds \quad \text{for all } \sigma > 0, t \geq t_0 \geq 1. \]

Proof. By using Lemma 3.4,

\[\int_{t_0}^{t} e^{\sigma s} y(s) \, ds \leq \int_{t_0}^{t} e^{(\sigma + 1) G(s)} \, ds \leq \int_{t_0}^{t} e^{(\sigma + 1) G(s)} \, ds. \]

Lemma 3.6.

\[\lim_{t \to \infty} e^{-\sigma t} \int_{t_0}^{t} e^{\sigma s} y(s) \, ds = 0 \quad \text{for all } \sigma > 0. \]

Proof. Using Lemma 3.5 and then L'Hospital's rule on \(\int_{t_0}^{t} e^{(\sigma + 1) G(s)} \, ds \) gives the result.

Lemma 3.7. Let \(r(t) \) and \(p(t) \) be continuous for \(t \geq t_0 \), let \(c \geq 0, k \geq 0, \) and let

\[r(t) \leq c + \int_{t_0}^{t} [kr(s) + p(s)] \, ds. \]

Then

\[r(t) \leq ce^{k(t-t_0)} + \int_{t_0}^{t} p(s)e^{k(t-s)} \, ds. \]

Proof. Let

\[R(t) = c + \int_{t_0}^{t} [kr(s) + p(s)] \, ds. \]
Then $R' - kR \leq p$. The result follows by integrating both sides from t_0 to t and solving for $R(t)$.

Proof of Theorem 3.2 (using Brauer’s techniques). Let $K \geq 1$ and $\sigma > 0$ such that $|e^{\sigma t}| \leq Ke^{-\sigma t}$ for all $t \geq 0$. Let $0 < \epsilon < \min(\sigma K^{-1}, \tau)$. From the hypothesis on ψ, choose T_ϵ and δ_ϵ so that $\delta_\epsilon \leq \epsilon$ and $T_\epsilon \geq 1$. Choose $T_0 \geq T_\epsilon$ so large that $t \geq T_0$ implies

$$K \int_1^t e^{-(\sigma - K \epsilon)(t-s)} \gamma(s) \, ds < \frac{\delta_\epsilon}{2}.$$

This is possible by Lemma 3.6. Finally, let $\delta = \delta [2K]^{-1}$ and consider any $t_0 \geq T_0$ and x_0 satisfying $|x_0| < \delta$. Then for as long as $|F(t, t_0, x_0)| < \delta$, we have

$$F(t) = e^{At-t_0}x_0 + \int_{t_0}^t e^{A(t-s)}\psi(s, F(s)) \, ds + \int_{t_0}^t e^{A(t-s)}g(s, F(s)) \, ds,$$

from which

$$|F(t)| \leq K\delta e^{-(t-t_0)} + \int_{t_0}^t \left[eK e^{-\sigma(t-s)} |F(s)| + Ke^{-\sigma(t-s)} \gamma(s) \right] \, ds$$

and

$$|F(t)| e^{\sigma t} \leq K\delta e^{\sigma t_0} + \int_{t_0}^t \left[eK |F(s)| e^{\sigma s} + Ke^{\sigma s} \gamma(s) \right] \, ds.$$

Lemma 3.7 applied to $r(t) = |F(t)| e^{\sigma t}$ yields

$$|F(t)| e^{\sigma t} \leq K\delta e^{\sigma t-t_0} + \int_{t_0}^t Ke^{\sigma s} \gamma(s) e^{K(t-s)} \, ds,$$

so that

$$|F(t)| \leq K\delta e^{-(\sigma - K \epsilon)(t-t_0)} + K \int_{t_0}^t e^{-(\sigma - K \epsilon)(t-s)} \gamma(s) \, ds,$$

hence

$$|F(t)| \leq K\delta + K \int_1^t e^{-(\sigma - K \epsilon)(t-s)} \gamma(s) \, ds < K\delta + \frac{\delta_\epsilon}{2} = \delta_\epsilon.$$

Thus, the inequality $|F(t, t_0, x_0)| < \delta_\epsilon$ holds on $[t_0, \infty)$ which implies that (3.1) holds on $[t_0, \infty)$, hence $|F(t, t_0, x_0)| \to 0$ as $t \to \infty$. Since $\delta_\epsilon \leq \epsilon$, we have $|F(t, t_0, x_0)| < \epsilon$ on $[t_0, \infty)$, which gives the asymptotic stability of $x = 0$ when $g(t, 0) = 0$, completing the proof.

Our final example shows that in a weak sense, condition (H_0) is necessary in order that solutions tend to zero.
Example 3.8. Consider the first order equation

\[x' = -ax + \gamma(t), \quad (3.2) \]

where \(a > 0, \gamma(t) \geq 0 \) (this condition is removed in Theorem 4.7), and \(\gamma \) does not satisfy (1.1). Then there exists \(\alpha > 0 \) and a sequence \(t_n \to \infty \) as \(n \to \infty \) such that \(\int_{t_n}^{t_n+1} \gamma(t) \, dt \geq \alpha \) for every \(n \). Then for every choice of \(x_0 \geq 0 \) and \(t_0 \geq 0 \),

\[
F(t, t_0, x_0) = e^{-a(t-t_0)}x_0 + e^{-at} \int_{t_0}^{t} e^{as}\gamma(s) \, ds \geq e^{-at} \int_{t_0}^{t} e^{as}\gamma(s) \, ds.
\]

Hence for all large \(n \),

\[
F(t_n + 1, t_0, x_0) \geq e^{-a(t_n+1)} \int_{t_0}^{t_n+1} e^{as}\gamma(s) \, ds \geq e^{-a\alpha}.
\]

Thus \(F(t, t_0, x_0) \to 0 \) as \(t \to \infty \), and the conclusion of Theorem 3.2 does not hold for (3.2).

4. Perturbed Nonlinear Systems

We start with a slightly more general theorem than that mentioned in the introduction.

Theorem 4.1. Let \(x = 0 \) be U.A.S. and \(f \in C_0 \) on \(D_M \) for (N). Let \(g(t, x) \) satisfy

\[(H_g): \text{There exists } r > 0 \text{ such that for every } b, 0 < b < r, \text{ there exist } \tau_b > 0 \text{ and a function } \gamma_b(t) \text{ continuous on } [\tau_b, \infty) \text{ such that } |g(t, x)| \leq \gamma_b(t) \text{ for all } b \leq |x| \leq r \text{ and } t \geq \tau_b, \text{ where}
\]

\[G_b(t) = \int_{t}^{t+1} \gamma_b(s) \, ds \to 0 \quad \text{as} \quad t \to \infty. \]

Then there exist \(T_0 > 0 \) and \(\delta_0 > 0 \) such that if \(t_0 \geq T_0 \) and \(|x_0| < \delta_0 \), then the solution \(F(t, t_0, x_0) \) of (P) satisfies \(|F(t, t_0, x_0)| \to 0 \) as \(t \to \infty \). In particular, if \(g(t, 0) = 0 \), then \(x = 0 \) is U.A.S. for (P).

Proof. By Theorem 2.7, there exists a Lyapunov function \(V \) for (N) on \(D_M \) satisfying

\[
\rho(|x|) \leq V(t, x) \leq \mu(|x|), \quad (4.1)
\]

\[
\dot{V}_{(N)}(t, x) \leq -\sigma(|x|), \quad (4.2)
\]

\[
|\nabla V(t, x)| \leq K, \quad (4.3)
\]
where \(\rho, \mu, \) and \(\sigma \) belong to \(\mathcal{K} \) and \(K \) is a positive constant. Now for as long as a solution \(F(t) \) of (P) exists,

\[
\frac{d}{dt} V(t, F(t)) = \frac{\partial}{\partial t} V(t, F(t)) + \nabla V(t, F(t)) \cdot [f(t, F(t)) + g(t, F(t))]
\]

\[
= \dot{V}(t, F(t)) + \nabla V(t, F(t)) \cdot g(t, F(t)).
\]

By integrating over any interval on which \(F(t) \) exists,

\[
(t, F(t)) - V(t_0, F(t_0)) = \int_{t_0}^{t} \dot{V}(s, F(s)) \, ds + \int_{t_0}^{t} \nabla V(s, F(s)) \cdot g(s, F(s)) \, ds
\]

\[
\leq - \int_{t_0}^{t} \sigma(|F(s)|) \, ds + K \int_{t_0}^{t} |g(s, F(s))| \, ds.
\]

Thus if \(0 < b \leq |F(s)| < r \) between \(t_0 \) and \(t \),

\[
V(t, F(t)) \leq - \int_{t_0}^{t} \sigma(|F(s)|) \, ds + K \int_{t_0}^{t} G_b(s) \, ds + V(t_0, F(t_0)).
\]

If \(t \geq t_0 \geq 1 \), then Lemma 3.4 yields

\[
V(t, F(t)) \leq - \sigma(b)(t - t_0) + KQ_b(t_0)(b - 1) + V(t_0, F(t_0)).
\]

Define

\[
Q_b(t) = \sup\{G_b(s) : t - 1 \leq s < \infty\}.
\]

Then \(Q_b(t) \searrow 0 \) as \(t \to \infty \) and

\[
V(t, F(t)) \leq - \sigma(b)(t - t_0) + KQ_b(t_0)(b - 1) + V(t_0, F(t_0)),
\]

hence

\[
V(t, F(t)) \leq [KQ_b(t_0) - \sigma(b)](t - t_0) + KQ_b(t_0) + \mu(|F(t)|).
\]

Let \(0 < \epsilon \leq r \). Choose \(\delta = \delta(\epsilon) \), \(0 < \delta < \epsilon \), so that \(2\mu(\delta) < \rho(\epsilon) \). Then choose \(T_1(\epsilon) \geq \tau_\delta + 1 \) so that

\[
2KQ_b(T_1) < \min\{\sigma(\delta), \rho(\epsilon)\}.
\]

Let \(|x_0| < \delta \) and \(t_0 \geq T_1 \). Then we claim

\[
|F(t, t_0, x_0)| < \epsilon \text{ on } [t_0, \infty).
\]

Suppose not. Let \(T_3 \) be the first point such that \(|F(T_3)| = \epsilon \) and let
$T_2 < T_3$ be the last point such that $|F(T_2)| = \delta$. Then $\delta \leq |F(t)| \leq \epsilon \leq r$ on $[T_2, T_3]$, hence by (4.5),

$$
\rho(\epsilon) \leq V(T_2, F(T_3)) \leq [KQ_0(T_3) - \sigma(\delta)](T_3 - T_2) + KQ_0(T_2) + \mu(|F(T_2)|)
$$

$$
\leq KQ_0(T_1) + \mu(\delta)
$$

$$
< \frac{1}{2}\rho(\epsilon) + \frac{1}{2}\rho(\epsilon) = \rho(\epsilon),
$$

a contradiction, proving (4.7). This proves the uniform stability of $x = 0$ for the case $g(t, 0) = 0$. For the rest of the proof choose $\delta_0 = \delta(r)$ and $T_0 = T_1(r)$. Fix $t_0 \geq T_0$ and $|x_0| < \delta_0$. Then (4.7) implies that $|F(t, t_0, x_0)| < r$ on $[t_0, \infty)$.

Let $0 < \eta < r$. Choose $\delta(\eta)$ and $T_1(\eta)$ as before so that (4.6) holds. Choose

$$
T = [\sigma(\delta)T_1(\eta) + 2KQ_0(1) + 2\mu(r)|\sigma(\delta)|^{-1}] > T_1(\eta)
$$

and it is clear that T depends only on η, not on t_0 or x_0. We now claim

$$
|F(t_1, t_0, x_0)| < \delta \quad \text{for some } t_1 \text{ in } [t_0 + T_1, t_0 + T]. \quad (4.8)
$$

Suppose not. Then $|F(t, t_0, x_0)| \geq \delta$ on $[t_0 + T_1, t_0 + T]$. Let $y_0 = F(t_0 + T_1, t_0, x_0)$. Then

$$
0 < \rho(\delta) \leq \rho(|F(t_0 + T, t_0 + T_1, y_0)|)
$$

$$
\leq V(t_0 + T, F(t_0 + T))
$$

$$
\leq [KQ_0(t_0 + T_1) - \sigma(\delta)](T - T_1) + KQ_0(t_0 + T_2) + \mu(|y_0|)
$$

$$
< -\frac{1}{2}\sigma(\delta)(T - T_1) + KQ_0(1) + \mu(r) = 0,
$$

a contradiction, proving (4.8). Thus by (4.7)

$$
|F(t, t_1, F(t_1, t_0, x_0))| < \eta \quad \text{on } [t_1, \infty)
$$

because $t_1 \geq t_0 + T_1 \geq T_1$ and $|F(t_1, t_0, x_0)| < \delta$. Hence, a fortiori, $|F(t, t_0, x_0)| < \eta$ for $t \geq t_0 + T$. Since η is arbitrary $|F(t, t_0, x_0)| \to 0$ as $t \to \infty$. Since T depends only on η and δ depends only on ϵ, $x = 0$ is U.A.S. if $g(t, 0) = 0$, and the proof is complete.

Clearly, any function satisfying (H_1) satisfies (H_2). The converse is not true as the following example shows.

Example 4.2. Define $g(t, x) = t[t^2x + 1]^{-1}$. Then g does not satisfy (H_1) because $g(t, 0) = t$, but g does satisfy (H_2) with

$$
\tau_0 = b^{-1} + 1, \quad \gamma_0(t) = t[b^{-1} - 1]^{-1},
$$

and

$$
G_0(t) = [2b] \log[(t + 1)b^{-1} - 1][tb^{-1} - 1]^{-1}.
$$
The next example shows that the hypothesis "$x = 0$ is U.A.S." cannot be weakened to the condition "$x = 0$ is uniformly stable and E.A.S."

Example 4.3. Consider the first order equations

$$x' = -(t + 1)x,$$ \hspace{1cm} (4.9)

$$x' = -(t + 1)x + 2(t + 1)^{-1}x = (t + 1)^{-1}x. \hspace{1cm} (4.10)$$

Then $x = 0$ is uniformly stable and E.A.S. for (4.9), the perturbation term $2(t + 1)^{-1}x$ in (4.10) satisfies (H_1), but all nontrivial solutions of (4.10) are unbounded.

The condition $f \in \mathcal{C}_0$ on D_M need not hold, however. The existence of a Lyapunov function satisfying (4.1), (4.2), and (4.3) is sufficient for the conclusion of Theorem 4.1, and such a function may exist even though $f \notin \mathcal{C}_0$, as can be seen below.

Example 4.4. Consider the first-order equation

$$x' = -(t + 1)x,$$ \hspace{1cm} (4.11)

whose right-hand side is not in \mathcal{C}_0, yet the function $V(t, x) = x^2$ satisfies (4.1), (4.2), and (4.3). Thus (4.11) can be perturbed by a function satisfying (H_2), although Theorem 4.1 as stated does not apply to (4.11).

We now consider the possibility of integrating the perturbation term before obtaining bounds on its norm. Specifically, consider the condition (H_a): Let $h(t)$ be continuous on $[0, \infty)$ and let $H(t)$ be a continuous, nonincreasing function with $H(t) \to 0$ as $t \to \infty$ such that

$$\left| \int_{t_0}^t h(s) \, ds \right| \leq H(t_0) \quad \text{for every} \quad 0 \leq t_0 \leq t \leq t_0 + 1.$$

Then any function $h(t)$ for which $\int_{t}^{t+1} |h(s)| \, ds \to 0$ as $t \to \infty$ satisfies (H_3), so that perturbation terms independent of x which satisfy (H_1) also satisfy (H_3). Example 4.5 shows the generality of (H_3).

Example 4.5. Let $h(t) = (t \sin t^3, t \cos t^3)$. Then $h(t)$ does not satisfy (H_1) because $|h(t)| \to \infty$ and hence $\int_t^{t+1} |h(s)| \, ds \to \infty$, as $t \to \infty$. But $h(t)$ satisfies (H_3), because, for example,

$$\left| \int_{t_0}^t s \cos s^3 \, ds \right| = \left| \int_{t_0}^t \left[s \cos s^3 - \frac{1}{3s^2} \sin 3s^3 \right] \, ds \right| + \int_{t_0}^t \frac{1}{3s^2} \sin 3s^3 \, ds \leq \left| \left[\frac{1}{3s^3} \right]_{t_0}^t \right| + \int_{t_0}^t \frac{1}{3s^2} \, ds \leq \frac{1}{3t} + \frac{1}{3t_0} - \frac{1}{3t} + \frac{1}{3t_0} = \frac{2}{3t_0}.$$
Theorem 4.6. Let $x = 0$ be U.A.S. and $f \in \mathcal{C}_0$ on D_m for (N). Let g satisfy (H_2) and h satisfy (H_3). Then there exist $T_0 > 0$ and $\delta_0 > 0$ such that if $t_0 \geq T_0$ and $|x_0| < \delta_0$, the solution $F(t, t_0, x_0)$ of

$$x' = f(t, x) + g(t, x) + h(t)$$ \hspace{1cm} (P_1)$$

satisfies $|F(t, t_0, x_0)| \to 0$ as $t \to \infty$.

Proof. In deriving the analog of (4.4) for the system (P_1), we are led to

$$V(t, F(t)) \leq - \int_{t_0}^t \sigma(|F(s)|) ds + f \int_{t_0}^t G_0(s) ds$$

$$+ \int_{t_0}^t \nabla V(s, F(s)) \cdot h(s) ds + V(t_0, F(t_0)). \hspace{1cm} (4.12)$$

Thus, we must estimate $|\int_{t_0}^t \nabla V(s, F(s)) \cdot h(s) ds|$.

Let $J(t) = \int_{t_0}^t h(s) ds$. Then

$$\int_{t_0}^t \nabla V(s, F(s)) \cdot h(s) ds$$

$$= \int_{t_0}^t \nabla V(s, F(s)) \cdot F'(s) ds + \int_{t_0}^t \frac{\partial}{\partial s} V(s, F(s)) ds - \int_{t_0}^t \frac{\partial}{\partial s} V(s, F(s)) ds$$

$$- \int_{t_0}^t \nabla V(s, F(s)) \cdot [f(s, F(s)) + g(s, F(s))] ds$$

$$+ \int_{t_0}^t \nabla V(s, F(s) - J(s)) \cdot [f(s, F(s)) + g(s, F(s))] ds$$

$$- \int_{t_0}^t \nabla V(s, F(s) - J(s)) \cdot [f(s, F(s)) + g(s, F(s))] ds$$

$$+ \int_{t_0}^t \frac{\partial}{\partial s} V(s, F(s) - J(s)) ds - \int_{t_0}^t \frac{\partial}{\partial s} V(s, F(s) - J(s)) ds$$

$$= \{V(t, F(t)) - V(t, F(t) - J(t)) \}$$

$$+ \int_{t_0}^t \left\{ \frac{\partial}{\partial s} V(s, F(s) - J(s)) - \frac{\partial}{\partial s} V(s, F(s)) \right\} ds$$

$$+ \int_{t_0}^t \{\nabla V(s, F(s) - J(s)) - \nabla V(s, F(s))\} \cdot \{f(s, F(s)) + g(s, F(s))\} ds.$$

We shall now use two facts which were not needed before; namely, f is bounded on D_m and V satisfies

$$|V(t, x) - V(t, y)| \leq A |x - y|,$$

$$|\nabla V(t, x) - \nabla V(t, y)| \leq A |x - y|.$$
and
\[\left| \frac{\partial}{\partial t} V(t, x) - \frac{\partial}{\partial t} V(t, y) \right| \leq A |x - y| \]
on \(D_M\) for some constant \(A > 0\). This latter fact holds because the first and second partials of \(V\) are bounded on \(D_M\) (by Theorem 2.7), while the former holds because \(f \in \mathcal{C}_0\) and \(f(t, 0) = 0\).

Let \(|f(t, x)| \leq B\) on \(D_M\). Temporarily, let \(0 < t - t_0 < 1\). Then \(|f(t)| \leq H(t_0)\). Thus
\[
\left| \int_{t_0}^t \nabla V(s, F(s)) \cdot h(s) \, ds \right|
\leq A |f(t)| + A \int_{t_0}^t |f(s)| \, ds + AB \int_{t_0}^t |f(s)| \, ds + A \int_{t_0}^t |f(s)| \gamma_0(s) \, ds
\leq [2A + AB] H(t_0) + AH(t_0) \int_{t_0-1}^t G_0(s) \, ds
= [2A + AB] H(t_0) + AH(t_0) + AH(t_0)Q_0(t_0)(t - t_0 + 1)
\leq [2A + AB + 2AQ_0(t_0)] H(t_0).
\]
Thus for arbitrary \(t > t_0\),
\[
\left| \int_{t_0}^t \nabla V(s, F(s)) \cdot h(s) \, ds \right|
\leq \left| \int_{t_0}^{t_0+1} \nabla V(s, F(s)) \cdot h(s) \, ds \right| + \cdots + \left| \int_{t_0+m}^t \nabla V(s, F(s)) \cdot h(s) \, ds \right|
\leq A[2 + B + 2Q_0(t_0)] H(t_0) + \cdots + A[2 + B + 2Q_0(t_0 + m)] H(t_0 + m)
\leq A[2 + B + 2Q_0(t_0)] H(t_0) + \cdots + A[2 + B + 2Q_0(t_0)] H(t_0)
\leq A[2 + B + 2Q_0(t_0)] H(t_0)[t - t_0 + 1].
\]
The proof now proceeds as the proof of Theorem 4.1.

If \(g(t, x) \equiv 0\) in \((P_1)\), then the condition \((H_3)\) on \(h(t)\) becomes necessary for the solutions to tend to zero.

Theorem 4.7. Let \(x = 0\) be U.A.S. and \(f \in \mathcal{C}_0\) on \(D_M\) for \((N)\). Then the conclusion of Theorem 4.6 holds for the system
\[x' = f(t, x) + h(t) \quad (P_2) \]
if and only if \(h(t)\) satisfies \((H_3)\).

Remark. In \((P_2)\), \(h(t)\) is a vector; compare this result with Example 3.8.
Proof. Let h satisfy (H_3). Then the conclusion of Theorem 4.6 holds for (P_2) by Theorem 4.6.

Conversely, suppose that h does not satisfy (H_3). Then there exist $\alpha > 0$ and sequences $\{t_n\}$ and $\{\epsilon_n\}$, with $0 < \epsilon_n \leq 1$ for every n and $t_n \to \infty$ as $n \to \infty$, such that

$$\left| \int_{t_n}^{t_n+\epsilon_n} h(t) \, dt \right| \geq \alpha$$

(4.13)

for every n. Assume (we shall contradict this assumption) that there exist some $t_0 \geq 0$ and some x_0 for which the solution $F(t, t_0, x_0)$ of (P_2) satisfies $\|F(t_0, x_0)\| \to 0$ as $t \to \infty$. Choose T so large that $t \geq T$ implies

$$|F(t, t_0, x_0)| < \alpha[3L]^{-1},$$

where L is the Lipschitz constant for f and we may assume without loss of generality that $L \geq 1$. Then for n so large that $t_n \geq T$, we have

$$\left| \int_{t_n}^{t_n+\epsilon_n} h(t) \, dt \right|$$

$$= \left| \int_{t_n}^{t_n+\epsilon_n} f(t, F(t, t_0, x_0)) \, dt + \int_{t_n}^{t_n+\epsilon_n} F'(t, t_0, x_0) \, dt \right|$$

$$\leq \int_{t_n}^{t_n+\epsilon_n} L |F(t, t_0, x_0)| \, dt + |F(t_n + \epsilon_n, t_0, x_0)| + |F(t_n, t_0, x_0)|$$

$$\leq \frac{\alpha}{3} + \frac{\alpha}{3L} + \frac{\alpha}{3L} < \alpha,$$

a contradiction to (4.13). Thus no solution of (P_2) tends to zero as $t \to \infty$ hence the conclusion of Theorem 4.6 certainly does not hold, completing the proof.

5. Perturbed Nonlinear Systems: A Second Proof

Theorem 5.1. Let $x = 0$ be U.A.S. and $f \in C_0$ on D_M for (N). Let g satisfy (H_1) and h satisfy (H_3). Then there exist $T_0 \geq 0$ and $\delta_0 > 0$ such that if $t_0 \geq T_0$ and $|x_0| < \delta_0$, the solution $F(t, t_0, x_0)$ of (P_1) satisfies $|F(t, t_0, x_0)| \to 0$ as $t \to \infty$. In particular, if $g(t, 0) = 0$ and $h(t) \equiv 0$, then $x = 0$ is U.A.S. for (P_1)

This result is not as general as Theorem 4.6 because here we need $f \in C_0$ even for the case $h(t) \equiv 0$ (see Example 4.4), and also because we assume g satisfies (H_1) rather than (H_2). However, the proof does not require Lyapunov functions, which is rather curious. Furthermore, almost no extra effort is
needed to handle the case where \(h(t) \neq 0 \), in contrast to the changes needed in Section 4.

Proof. Solutions and constants corresponding to the system \((N)\) shall be starred, those for \((P_1)\) shall not. Let \(Q(t) = \sup \{ G(s) : t - 1 \leq s < \infty \} \) on \([1, \infty)\). Then \(Q(t) \searrow 0 \) as \(t \to \infty \). By Lemma 3.4,

\[
\int_{t_0}^{t} \gamma(s) \, ds \leq \int_{t_0-1}^{t} G(s) \, ds \leq Q(t_0)(t - t_0 + 1)
\]

if \(t \geq t_0 \geq 1 \). Also

\[
\left| \int_{t_0}^{t} h(s) \, ds \right| \leq \left| \int_{t_0}^{t_0+1} h(s) \, ds \right| + \cdots + \left| \int_{t_0+m}^{t} h(s) \, ds \right| \\
\leq H(t_0) + \cdots + H(t_0 + m) \\
\leq H(t_0)(t - t_0 + 1).
\]

Let \(B(t) = Q(t) + H(t) \) and let \(L \) be the Lipschitz constant for \(f \). Let \(t_0 \geq 1 \) and \(|x_0| \leq r \). Then if \(|F(t, t_0, x_0)| \leq r \) on \([t_0, t_0 + T]\) for some \(T > 0 \), we have

\[
|F(t, t_0, x_0) - F^*(t, t_0, x_0)| \\
= |x_0 + \int_{t_0}^{t} \left[f(s, F(s, t_0, x_0)) + g(s, F(s, t_0, x_0)) + h(s) \right] \, ds - x_0 - \int_{t_0}^{t} f(s, F^*(s, t_0, x_0)) \, ds| \\
\leq \int_{t_0}^{t} L |F(s) - F^*(s)| \, ds + \int_{t_0}^{t} \gamma(s) \, ds + \int_{t_0}^{t} h(s) \, ds \\
\leq \int_{t_0}^{t} L |F(s) - F^*(s)| \, ds + B(t_0)(t - t_0 + 1) \\
= B(t_0) + \int_{t_0}^{t} [L |F(s) - F^*(s)| + B(t_0)] \, ds.
\]

From Lemma 3.7,

\[
|F(t, t_0, x_0) - F^*(t, t_0, x_0)| \leq B(t_0)e^{L(t-t_0)} + \int_{t_0}^{t} B(t_0)e^{L(t-s)} \, ds \\
\leq R(t_0)e^{Lr} + R(t_0)e^{Lr}(t - t_0) \\
\leq e^{Lr}(1 + r)B(t_0).
\]

We may assume without loss of generality that \(r \leq \delta_0^* \).
Let $0 < \epsilon \leq r$. Choose $\delta = \delta(\epsilon) = \delta^*(\epsilon/2)$ so that $0 < \delta < \epsilon$. Choose $\tau = \tau(\epsilon) = \tau^*(\delta/2)$. Choose $T_1 = T_1(\epsilon) > 1$ so large that

$$B(T_1) < \delta[e^{L\tau}(1 + \tau)2]^{-1}.$$

Let $t_0 \geq T_1$ and $|x_0| < \delta$. Then for as long as $|F(t, t_0, x_0)| \leq \epsilon$ in the interval $[t_0, t_0 + \tau]$,

$$|F(t, t_0, x_0)| \leq |F(t, t_0, x_0) - F^*(t, t_0, x_0)| + |F^*(t, t_0, x_0)|$$

$$\leq e^{L\tau}(1 + \tau)B(t_0) + \epsilon/2$$

$$\leq e^{L\tau}(1 + \tau)B(T_1) + \epsilon/2$$

$$< \delta/2 + \epsilon/2 \leq \epsilon/2 + \epsilon/2 = \epsilon.$$

Since $\epsilon \leq r$, $F(t, t_0, x_0)$ can be continued to $[t_0, t_0 + \tau]$ on which $|F(t, t_0, x_0)| < \epsilon$. Let $x_1 = F(t_0 + \tau, t_0, x_0)$. Then

$$|x_1| \leq |x_1 - F^*(t_0 + \tau, t_0, x_0)| + |F^*(t_0 + \tau, t_0, x_0)|$$

$$< \delta/2 + |F^*(t_0 + \tau, t_0, x_0)|$$

$$< \delta/2 + \delta/2 = \delta.$$

Now let m be a positive integer and assume that $|F(t, t_0, x_0)| < \epsilon$ on $[t_0, t_0 + m\tau]$ and $|F(t_0 + m\tau, t_0, x_0)| < \delta$. Let $x_m = F(t_0 + m\tau, t_0, x_0)$. Then for as long as $|F(t, t_0 + m\tau, x_m)| \leq \epsilon$ on the interval $[T_0 + m\tau, t_0 + (m + 1)\tau]$, we have

$$|F(t, t_0 + m\tau, x_m)| \leq |F(t, t_0 + m\tau, x_0) - F^*(t, t_0 + m\tau, x_0)|$$

$$+ |F^*(t, t_0 + m\tau, x_m)|$$

$$\leq e^{L\tau}(1 + \tau)B(t_0 + m\tau) + \epsilon/2$$

$$< \delta/2 + \epsilon/2 \leq \epsilon.$$

Since $\epsilon \leq r$, $F(t, t_0, x_0)$ can be continued to the entire interval $[t_0 + m\tau, t_0 + (m + 1)\tau]$ on which $|F(t, t_0, x_0)| < \epsilon$. Let $x_{m+1} = F(t_0 + (m + 1)\tau, t_0, x_0)$. Then

$$|x_{m+1}| \leq |F(t_0 + (m + 1)\tau, t_0 + m\tau, x_m) - F^*(t_0 + (m + 1)\tau, t_0 + m\tau, x_m)|$$

$$+ |F^*(t_0 + (m + 1)\tau, t_0 + m\tau, x_m)|$$

$$< \delta/2 + \delta/2 = \delta.$$

Thus, by induction, $|F(t, t_0, x_0)| < \epsilon$ on every interval $[t_0 + m\tau, t_0 + (m + 1)\tau]$, and hence on $[t_0, \infty)$. Hence if $g(t, 0) = 0$ and $h(t) = 0$, then we have shown that $x = 0$ is uniformly stable. For the rest of the proof, choose $\delta_0 = \delta(r)$ and $T_0 = T_1(r)$. Fix $t_0 \geq T_0$ and $|x_0| < \delta_0$. Then $|F(t, t_0, x_0)| < \epsilon$ on $[t_0, \infty)$.

Let $0 < \eta < r$. Choose $\delta(\eta) = \delta^*(\eta/2)$, $0 < \delta < \eta$, $\tau(\eta) = T^*(\delta/2)$, and $T_1(\eta)$ so that

$$B(T_1) < \delta[e^{L_\tau(1 + r)}/2]^{-1}.$$

Let $y_0 = F(t_0 + T_1, t_0, x_0)$. Then $|y_0| < r \leq \delta^*_0$. Then

$$|F(t_0 + \tau + T_1, t_0 + T_1, y_0)| \leq |F(t_0 + \tau + T_1, t_0 + T_1, y_0) - F^*(t_0 + \tau + T_1, t_0 + T_1, y_0)|$$
$$+ |F^*(t_0 + \tau + T_1, t_0 + T_1, y_0)|$$
$$\leq e^{L_\tau(1 + r)}B(t_0 + T_1) + \delta/2$$
$$< \delta/2 + \delta/2 = \delta.$$

Thus by the first part of the proof,

$$|F(t, t_0, x_0)| = |F(t, t_0 + \tau + T_1, F(t_0 + \tau + T_1, t_0, x_0))| < \eta$$

for all $t \geq t_0 + T$, where $T = T(\eta) = \tau + T_1$, completing the proof.

References