Publications

 

 

A. Books:

 

1984    H. W. Hethcote and J. A. Yorke,

            Gonorrhea Transmission Dynamics and Control, Springer-Verlag Lecture Notes in Biomathematics #56, 1984.

1994    E. Ott, T. Sauer and J. A. Yorke,

            Coping with Chaos, 1994 John Wiley & Sons, Inc.

1997    K. Alligood, T. Sauer and J. A. Yorke,

            Chaos: An Introduction to Dynamical Systems, Springer-Verlag, New York (1997). ISBN 0-387-94677-2.

1997    H. E. Nusse and J. A. Yorke,

            Dynamics: Numerical Explorations, Applied Mathematical Sciences 101, Springer-Verlag, New York, Second Edition 1997 (First Edition 1994). Book includes a computer disk with the program "Dynamics".

1997    C. Grebogi and. J. A. Yorke, Editors,

             The Impact of Chaos on Science and Society, United Nations University Press, Tokyo (1997). ISBN 92-808-0882-6.

 

B. Journal Papers

 

1967

 

1. A. Strauss and J. A. Yorke, Perturbation theorems for ordinary differential equations, J. Differential Equations 1 (1967), 15-30.

 

2. J. A. Yorke, Invariance for ordinary differential equations.

Math. Systems Theory 1 (1967), 353‑372.

 

3. A. Strauss and J. A. Yorke, On asymptotically autonomous differential equations. Math. Systems Theory 1 (1967), 175-182.

 

 

1968

 

1. A. Strauss and J. A. Yorke, Perturbing asymptotically stable differential equations, Bull. Amer. Math. Soc. 74 (1968), 992-996. Announcement of #1969-7.

 

2. J. A. Yorke, Extending Lyapunov's second method to non-Lipschitz Lyapunov functions, Bull. Amer. Math. Soc. 74 (1968), 322-325. Announcement of #1970-3.

 

 

1969

 

1. J. A. Yorke, Permutations and two sequences with the same cluster set, Proc. Amer. Math. Soc. 20 (1969), 606.

 

2. Elliot Winston and J. A. Yorke, Linear delay differential equations whose solutions become identically zero, Rev. Roumaine Math. Pures Appl. 14 (1969), 885-887.

 

3. A. Strauss and J. A. Yorke, Identifying perturbations which preserve asymptotic stability, Proc. Amer. Math. Soc. 22 (1969), 513-518.

 

4. N. P. Bhatia, G. P. Szego and J. A. Yorke, A Lyapunov characterization of attractors, Boll. Un. Mat. Ital. 4 (1969), 222-228.

 

5. G. S. Jones and J. A. Yorke, The existence and nonexistence of critical points in bounded flows, J. Differential Equations 6 (1969), 238-247.

 

6. A. Strauss and J. A. Yorke, On the fundamental theory of differential equations, SIAM Rev. 11 (1969), 236-246.

 

7. A. Strauss and J. A. Yorke, Perturbing uniform asymptotically stable non-linear systems, J. Differential Equations 6 (1969), 452-483. Announcement in #1968-1.

 

8. A. Strauss and J. A. Yorke, Perturbing uniformly stable linear systems with and without attraction, SIAM J. Appl. Math. 17 (1969), 725-739.

 

9. J. A. Yorke, Non-continuable solutions of differential-delay equations, Proc. Amer. Math. Soc. 21 (1969), 648-652.

 

10. J. A. Yorke, Periods of periodic solutions and the Lipschitz constant, Proc. Amer. Math. Soc. 22 (1969), 509-512.

 

 

1970

 

1. J. A. Yorke, Asymptotic stability for one-dimensional differential delay-equations, J. Differential Equations 7 (1970), 189-202.

 

2. J. A. Yorke, A continuous differential equation in Hilbert space without existence, Funkcialaj Ekvacioj 13 (1970), 19-21.

 

3. J. A. Yorke, Differential inequalities and non-Lipschitz scalar functions, Math. Systems Theory 4 (1970), 140-153.

 

4. Gerald S. Goodman and J. A. Yorke, Misbehavior of solutions of the differential equation dy/dx = f(x,y) + epsilon, when the right side is discontinuous, Mathematica Scandinavica 27 (1970), 72-76.

 

5. A. Strauss and J. A. Yorke, Linear perturbations of ordinary differential equations, Proc. Amer. Math. Soc. 26 (1970), 255-260.

 

6. J. A. Yorke, A theorem on Lyapunov functions using V’’ (Second derivative), Math. Systems Theory 4 (1970), 40-45. doi:10.1007/BF01705884

 

1971

 

1. A. Lasota and J. A. Yorke, Oscillatory solutions of a second order ordinary differential Equation, Ann. Polon. Math. 25 (1971), 175-178.

 

2. J. A. Yorke, Another proof of the Lyapunov convexity theorem, SIAM J. Control (1971), 9 351-353.

 

3. S. Saperstone and J. A. Yorke, Controllability of linear oscillatory systems using positive controls, SIAM J. Control 9 (1971), 253-272.

 

4. A. Lasota and J. A. Yorke,

Bounds for periodic solutions of differential equations in Banach spaces,
J. Differential Equations 10 (1971), 83-91.

 

 

1972

 

1. A. Lasota and J. A. Yorke,
Existence of solutions of two-point boundary value problems for nonlinear systems,
J. Differential Equations 11 (1972), 509-518.

 

2. J. A. Yorke, The maximum principle and controllability of nonlinear equations, SIAM J. Control 10 (1972), 334-338.

 

3. S. Grossman and J. A. Yorke,
Asymptotic behavior and stability criteria for differential delay equations),
J. Differential Equations 12 (1972), 236-255.

 

4. S. Bernfeld and J. A. Yorke, The behavior of oscillatory solutions of x"(t)+p(t)g(x(t))=0, SIAM J. Math. Anal. 3 (1972), 654-667.

 

 

1973

 

1. F. W. Wilson, Jr. and J. A. Yorke,
Lyapunov functions and isolating blocks,
J. Differential Equations 13 (1973), 106-123.

 

2. K. Cooke and J. A. Yorke,

Some equations modelling growth processes and gonorrhea epidemics,

Math. Biosci. 16 (1973), 75-101.

 

3,4. W. London, M.D. and J. A. Yorke,
Recurrent outbreaks of measles, chicken pox, and mumps:
 I. Seasonal variation in contact rates
, and
II. Systematic differences in contact rates and stochastic effects,
Amer. J. Epidemiology 98 (1973), 453-468 and 469-482.

 

5. A. Lasota and J. A. Yorke,
The generic property of existence of solutions of differential equations in Banach space,
J. Differential Equations 13 (1973), 1-12.

 

6. A. Lasota and J. A. Yorke,
On the existence of invariant measures for piecewise monotonic transformations,
Trans. Amer. Math. Soc. 186 (1973), 481-488.

 

7. J. A. Yorke and W. N. Anderson, Predator-prey patterns, Proc. Nat. Acad. Sci. 70 (1973), 2069-2071.

 

 

1974

                                                                                                           

1. S. N. Chow and J. A. Yorke,
Lyapunov theory and perturbations of stable and asymptotically stable systems,
J. Differential Equations 15 (974), 308-321.

 

2. J. L. Kaplan and J. A. Yorke,
Ordinary differential equations which yield periodic solutions of differential delay questions,
J. Math. Anal. Appl. 48 (1974), 317-324.

 

3. J. L. Kaplan, A. Lasota and J. A. Yorke, An application of the Wazewski retract method to boundary value problems, Zeszyty Nauk. Uniw. Jagiellon 356 (1974), 7-14.

 

 

1975

 

1. J. L. Kaplan and J. A. Yorke, On the stability of a periodic solution of a differential equation, SIAM J. Math. Anal. 6 (1975), 268-282.

 

2. T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992.

 

 

1976

 

1. J. C. Alexander and J. A. Yorke,

The implicit function theorem and the global methods of cohomology,
J. Functional Anal. 21 (1976), 330-339.

 

2. A. Lajmanovich Gergely and J. A. Yorke,

A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci. 28 (1976), 221-236.

 

3. R. B. Kellogg, T. Y. Li and J. A. Yorke, A constructive proof of the Brouwer fixed point theorem and computational results, SIAM J. Numer. Anal. 13 (1976), 473-383.

 

 

1977

 

1. J. L. Kaplan and J. A. Yorke,
On the nonlinear differential delay equation dx/dt = -f(x(t), x(t-1)),
J. Differential Equations 23 (1977), 293-314.

 

2. J. L. Kaplan and J. A. Yorke, Competitive exclusion and nonequilibrium coexistence, Amer. Naturalist 111 (1977), 1030-1036.

 

3. A. Lasota and J. A. Yorke, On the existence of invariant measures for transformations with strictly turbulent trajectories, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astro. Phys.225 (1977), 233-238.

 

4. J. C. Alexander and J. A. Yorke, Parameterized functions, bifurcation, and vector fields on spheres, Prob. of the Asymptotic Theory of Nonlinear Oscillations Order of the Red Banner, Inst. of Mathematics Kiev 1977, 15-17: Anniversary volume in honor of I. Mitropolsky.

 

 

1978

 

1. T. Y. Li and J. A. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc.235 (1978), 183-192.

 

2. J. C. Alexander and J. A. Yorke, Global bifurcation of periodic orbits, Amer. J. Math. 100 (1978), 263-292.

 

3. S. N. Chow, J. Mallet-Paret and J. A. Yorke,
Finding zeroes of maps: Homotopy methods that are constructive with probability one,

Math. of Comp. 32 (1978), 887-899.

 

4. J. A. Yorke, H. W. Hethcote and A. Nold, Dynamics and control of the transmission of gonorrhea, Sexually Transmitted Diseases 5 (1978), 51-56.

 

5. T. Y. Li and J. A. Yorke, Ergodic maps on [0,1] and nonlinear pseudo-random number generators, Nonlinear Anal. 2 (1978), 473-481.

 

6. S. N. Chow, J. Mallet-Paret and J. A. Yorke, Global Hopf bifurcation from a multiple eigenvalue, Nonlinear Anal. 2 (1978), 753-763.

 

7. J. C. Alexander and J. A. Yorke,
Calculating bifurcation invariants as elements in the homotopy of the general linear group,
J. Pure Appl. Algebra 13 (1978), 1-8.

 

8. J. C. Alexander and J. A. Yorke, The homotopy continuation method: Numerically implementable topological procedures, Trans. Amer. Math. Soc. 242 (1978), 271-284.

 

9. T. D. Reynolds, W. P. London and J. A. Yorke, Behavioral rhythms in schizophrenia , J. Nervous and Mental Disease 166 (1978), 489-499.

 

 

1979

 

1. J. L. Kaplan, M. Sorg and J. A. Yorke, Solutions of dx/dt = f(x(t), x(t-1)) have limits when f is an order relation, Nonlinear Anal. 3 (1979), 53-58.

 

2. J. L. Kaplan and J. A. Yorke, Nonassociative real algebras and quadratic differential equations,

Nonlinear Anal. 3 (1979), 49-51.

 

3. J. A. Yorke, N. Nathanson, G. Pianigiani and J. Martin, Seasonality and the requirements for perpetuation and eradication of viruses in populations, Amer. J. Epidemiology 109 (1979), 103-123.

 

4. G. Pianigiani and J. A. Yorke, Expanding maps on sets which are almost invariant: Decay and chaos, Trans. Amer. Math. Soc. 252 (1979), 351-366.

 

5. J. L. Kaplan and J. A. Yorke, Preturbulence: A regime observed in a fluid flow model of Lorenz, Comm. Math. Phys. 67 (1979), 93-108. This paper is reprinted in Russian in a book edited by Sinai and Kolmogorov on strange attractors.

 

6. J. A. Yorke and E. D. Yorke,
Metastable chaos: The transition to sustained chaotic oscillations in a model of Lorenz,
J. Stat. Phys. 21 (1979), 263-277.

 

C11. J. L. Kaplan and J. A. Yorke, Chaotic behavior of multidimensional difference equations, in Functional Differential Equations and Approximation of Fixed Points, H. O. Peitgen and H. O. Walther, eds., Springer Lecture Notes in Math # 730 (1979), 204-227. {A meeting proceedings}

 

 

1980

 

1. J. Auslander and J. A. Yorke,
Interval maps, factors of maps, and chaos,
Tohoku Math. J. 32 (1980), 177-188.

 

C15. T. Y. Li and J. A. Yorke,
A simple reliable numerical algorithm for following homotopy paths,
in Analysis and Computation of Fixed Points, Academic Press (1980), 73-91: The proceedings of Math. Res. Center conference at the University of Wisconsin, May 1979.

 

 

1981

 

1. A. Lasota and J. A. Yorke, The law of exponential decay for expanding mappings , Rend. Sem. Mat. Univ. Padova 64 (1981), 141-157.

 

2. K. T. Alligood, J. Mallet-Paret and J. A. Yorke, Families of periodic orbits: Local continuability does not imply global continuability,

J. Differential Geom. 16 (1981), 483-492.

 

 

1982

 

1. J. Mallet-Paret and J. A. Yorke,
Snakes: Oriented families of periodic orbits, their sources, sinks, and continuation,
J. Differential Equations 43 (1982), 419-450.

 

2. H. W. Hethcote, J. A. Yorke and A. Nold, Gonorrhea modelling: A comparison of control methods, Math. Biosci. 58 (1982), 93-109.

 

3. A. Lasota and J. A. Yorke, Exact dynamical systems and the Frobenius-Perron operator. Trans. Amer. Math. Soc. 273 (1982), 375-384.

 

4. T. Y. Li, M. Misiurewicz, G. Pianigiani and J. A. Yorke, Odd chaos, Phys. Lett. 87A (1982), 271-273.

 

5. T. Y. Li, M. Misiurewicz, G. Pianigiani, and J. A. Yorke, No division implies chaos , Trans. Amer. Math. Soc. 273 (1982), 191-199.

 

6. C. Grebogi, E. Ott and J. A. Yorke, Chaotic attractors in crisis, Phys. Rev. Lett. 48 (1982), 1507-1510. Announcement of #1983-3.

 

 

1983

 

1. P. Frederickson, J. L. Kaplan, E. D. Yorke and J. A. Yorke, The Lyapunov dimension of strange attractors, J. Differential Equations 49 (1983), 185-207.

 

2. J. C. Alexander and J. A. Yorke,
On the continuability of periodic orbits of parametrized three dimensional differential equations,
J. Differential Equations 49 (1983), 171-184.

 

3. C. Grebogi, E. Ott and J. A. Yorke, Crises, sudden changes in chaotic attractors, and transient chaos, Physica 7D (1983), 181-200. Announcement in #1982-6.

 

4. J. D. Farmer, E. Ott and J. A. Yorke, The dimension of chaotic attractors, Physica 7D (1983), 153-180.

 

5. C. Grebogi, E. Ott and J. A. Yorke,
Fractal basin boundaries, long-lived chaotic transients, and unstable-unstable pair bifurcation,
Phys. Rev. Lett. 50 (1983), 935-938, E 51 (1983), 942.

 

6. C. Grebogi, E. Ott and J. A. Yorke,
Are three frequency quasiperiodic orbits to be expected in typical nonlinear dynamical systems?,
Phys. Rev. Lett. 51 (1983), 339-342. Announcement of #1985-4.

 

7. J. A. Yorke and K. T. Alligood,

Cascades of period doubling bifurcations: A prerequisite for horseshoes,

Bull. Amer. Math. Soc. 9 (1983), 319-322. Announcement of #1985-7.

 

8. C. Grebogi, S. W. McDonald, E. Ott and J. A. Yorke,

Final state sensitivity: An obstruction to predictability,

Phys. Letters 99A (1983), 415-418.

 

1984

 

1. J. L. Kaplan, J. Mallet-Paret and J. A. Yorke,
The Lyapunov dimension of a nowhere differentiable attracting torus,

Ergodic Theory and Dyn. Sys. 4 (1984), 261-281.

 

2. B. Curtis Eaves and J. A. Yorke, Equivalence of surface density and average directional density, Math. Operations Res. 9 (1984), 363-375.

 

3. K. T. Alligood and J. A. Yorke,
Families of periodic orbits: Virtual periods and global continuability,
J. Differential Equations 55 (1984), 59-71.

 

4. J. C. Alexander and J. A. Yorke,
Fat baker’s transformations   ,

Ergodic Theory and Dyn. Sys. 4 (1984), 1-23.

 

5. B. R. Hunt and J. A. Yorke,

When all solutions of dx/dt = sumi qi(t)x(t-Ti (t)) oscillate,

J. Differential Equations 53 (1984), 139-145.

 

6. A. Lasota, T. Y. Li and J. A. Yorke,

Asymptotic periodicity of the iterates of Markov operators,

Trans. Amer. Math. Soc. 286 (1984), 751-764.

 

7. C. Grebogi, E. Ott, S. Pelikan and J. A. Yorke,

Strange attractors that are not chaotic,
Physica 13D (1984), 261-268.

 

8. E. Ott, W. D. Withers and J. A. Yorke,

Is the dimension of chaotic attractors invariant under coordinate changes?,
J. Stat. Phys. 36 (1984), 687-697.

 

Book H. W. Hethcote and J. A. Yorke,

Gonorrhea Transmission Dynamics and Control,

Springer-Verlag Lecture Notes in Biomathematics #56, 1984.

 

1985

 

1.T. Y. Li, J. Mallet-Paret and J. A. Yorke,
Regularity results for real analytic homotopies,

Numerische Mathematik 46 (1985), 43-50.

 

2. E. Ott, E. D. Yorke and J. A. Yorke, A scaling law: How an attractor’s volume depends on noise level, Physica 16D (1985), 62-78.

 

3. J. A. Yorke, C. Grebogi, E. Ott and L. Tedeschini-Lalli Scaling behavior of windows in dissipative dynamical systems, Phys. Rev. Lett. 54 (1985), 1095-1098.

 

4. C. Grebogi, E. Ott and J. A. Yorke,
Attractors on an N-torus: Quasiperiodicity versus chaos,
Physica 15D (1985), 354-373. Announcement in #1983-6.

 

5. S. W. McDonald, C. Grebogi, E. Ott and J. A. Yorke,
Fractal basin boundaries
,
Physica 17D (1985), 125-153.

 

6. S. W. McDonald, C. Grebogi, E. Ott and J. A. Yorke,
Structure and crises of fractal basin boundaries,
Phys. Lett. 107A (1985), 51-54.

 

7. J. A. Yorke and K. T. Alligood,
Period doubling cascades of attractors: A prerequisite for horseshoes, Comm. Math. Phys. 101 (1985), 305-321. Announcement in #1983-7. See also #1987-8.

 

8. C. Grebogi, E. Ott and J. A. Yorke,
Super persistent chaotic transients,
Ergodic Theory and Dyn. Sys. 5 (1985), 341-372.

 

 

1986

 

1. C. Grebogi, S. W. McDonald, E. Ott and J. A. Yorke,
The exterior dimension of fat fractals,
Phys. Lett. 110A (1985), 1-4; E 113A (1986), 495.
Also, Comment on "Sensitive dependence on parameters in nonlinear dynamics" and on "Fat fractals on the energy surface" (with C. Grebogi and E. Ott), Phys. Rev. Lett 56 (1986), 266.

 

2. C. Grebogi, E. Ott and J. A. Yorke,
Metamorphoses of basin boundaries in nonlinear dynamical systems,
Phys. Rev. Lett. 56 (1986), 1011-1014.

 

3. A. Lasota and J. A. Yorke,
Statistical Periodicity of Deterministic Systems,
Casopis Pro Pestovani Matematiky 111 (1986), 1-13.

 

4. K. T. Alligood and J. A. Yorke,
Hopf bifurcation: The appearance of virtual periods in cases of resonance,
J. Differential Equations 64 (1986), 375-394.

 

5. L. Tedeschini-Lalli and J. A. Yorke,
How often do simple dynamical processes have infinitely many coexisting sinks?,
Comm. Math. Phys. 106 (1986), 635-657.

 

6. C. Grebogi, E. Ott and J. A. Yorke, Critical exponent of chaotic transients in nonlinear dynamical systems, Phys. Rev. Lett. 57 (1986), 1284-1287.

 

7. J. L. Hudson, O. E. Rossler and J. A. Yorke,

Cloud attractors and time-inverted Julia boundaries,

Z. Naturforsch 41A (1986), 979-980.

 

1987

 

1. C. Grebogi, E. Kostelich, E. Ott and J. A. Yorke,

Multi-dimensioned intertwined basin boundaries and the kicked double rotor,
Phys. Letters 118A (1986), 448-454; E 120A (1987), 497.

 

2. E. Kostelich and J. A. Yorke,
Lorenz cross sections of the chaotic attractor of the double rotor,
Physica 24D (1987), 263-278.

 

3. J. A. Yorke, E. D. Yorke, and J. Mallet-Paret,
Lorenz-like chaos in a partial differential equation for a heated fluid loop,
Physica 24D (1987), 279-291.

 

4. T. Y. Li, T. Sauer and J. A. Yorke,
Numerical solution of a class of deficient polynomial systems,
SIAM J. Numer. Anal. 24 (1987), 435-451.

 

5. C. Grebogi, E. Ott and J. A. Yorke,
Basin boundary metamorphoses: Changes in accessible boundary orbits,
Physica 24D (1987), 243-262, and Nucl. Phys. B. (Suppl.) 2 (1987), 281-300.

 

6. C. Grebogi, E. Ott and J. A. Yorke,
Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics,
Science 238 (1987), 632-638.

 

7. C. Grebogi, E. Kostelich, E. Ott and J. A. Yorke,
Multi-dimensioned intertwined basin boundaries: Basin structure of the kicked double rotor,
Physica 25D (1987), 347-360.

 

8. K. T. Alligood, E. D. Yorke and J. A. Yorke,
Why period-doubling cascades occur: Periodic orbit creation followed by stability shedding,
Physica 28D (1987), 197-205.

 

9. C. Grebogi, E. Ott and J. A. Yorke,
Unstable periodic orbits and the dimension of chaotic attractors,
Phys. Rev. A, 36 (1987), 3522-3524.

 

10. F. Varosi, C. Grebogi and J. A. Yorke,
Simplicial approximation of Poincare maps of differential equations,
Phys. Letters A124 (1987), 59-64.

 

11. S. M. Hammel, J. A. Yorke and C. Grebogi,
Do numerical orbits of chaotic dynamical processes represent true orbits?,
J. of Complexity 3 (1987), 136-145.

 

12. C. Grebogi, E. Ott, J. A. Yorke and H. E. Nusse,
Fractal basin boundaries with unique dimension,
Ann. N.Y. Acad. Sci 497, (1987), 117-126.

 

13. T. Y. Li, T. Sauer and J. A. Yorke,
The random product homotopy and deficient polynomial systems,
Numerische Mathematik 51 (1987), 481-500.

 

14. C. Grebogi, E. Ott, F. Romeiras and J. A. Yorke,
Critical exponents for crisis induced intermittency,
Phys. Rev. A 36 (1987), 5365-5380.

 

 

1988

 

1. C. Grebogi, E. Ott and J. A. Yorke,
Unstable periodic orbits and the dimensions of multifractal chaotic attractors,
Phys. Rev. A 37 (1988), 1711-1724.

 

2. E. M. Coven, I. Kan and J. A. Yorke,
Pseudo-orbit shadowing in the family of tent maps,
Trans. Amer. Math. Soc. 308 (1988), 227-241.

 

3. H. E. Nusse and J. A. Yorke,
Is every approximate trajectory of some process near an exact trajectory of a nearby process?,
Comm. Math. Phys. 114 (1988), 363-379.

 

4. H. E. Nusse and J. A. Yorke,
Period halving for xn+1 = MF(xn) where F has negative Schwarzian derivative,
Phys. Letters A 127 (1988), 328-334.

 

5. E. Kostelich and J. A. Yorke,
Noise reduction in Dynamical Systems
,
Phys. Rev. A. 38 (1988), 1649-1652.

 

6. S. M. Hammel, J. A. Yorke and C. Grebogi,
Numerical orbits of chaotic processes represent true orbits
,
Bull. Amer. Math. Soc. 19 (1988), 465-469.

 

7. P. M. Battelino, C. Grebogi, E. Ott, J. A. Yorke and E. D. Yorke,

Multiple coexisting attractors, basin boundaries and basic sets,

Physica 32 D (1988), 296-305.

 

8. C. Grebogi, E. Ott and J. A. Yorke, Roundoff-induced periodicity and the correlation dimension of chaotic attractors, Phys. Rev. A 38 (1988), 3688-3692.

 

9. T. Y. Li, T. Sauer, J. A. Yorke, Numerically determining solutions of systems of polynomial equations, Bull. Amer. Math. Soc. 18 (1988), 173-177.  

 

 

1989

 

1. I. Kramer, E. D. Yorke and J. A. Yorke, The AIDS epidemic's influence on the gay contact rate from analysis of gonorrhea incidence, Math. Comput. Modelling 12 (1989), 129-137.

 

2. E. Ott, C. Grebogi and J. A. Yorke, Theory of first order phase transitions for chaotic attractors of nonlinear dynamical systems, Phys. Letters A 135 (1989), 343-348.

 

3. E. Ott, T. Sauer and J. A. Yorke, Lyapunov partition functions for the dimensions of chaotic sets, Phys. Rev. Lett. A 39 (1989), 4212-4222.

 

4. T. Y. Li, T. Sauer and J. A. Yorke, The cheater's homotopy: An efficient procedure for solving systems of polynomial equations, SIAM J. Numer. Anal. 26 (1989), 1241-1251. Also announcement: Bull. Amer. Math. Soc. 18 (1988), 173-177: Numerically determining solutions of systems of polynomial equations.

 

5. H. E. Nusse and J. A. Yorke, A procedure for finding numerical trajectories on chaotic saddles, Physica D 36 (1989), 137-156.

 

6. P. M. Battelino, C. Grebogi, E. Ott and J. A. Yorke, Chaotic attractors on a 3-torus and torus break-up, Physica D 39 (1989), 299-314.

 

7. B-S. Park, C. Grebogi, E. Ott and J. A. Yorke, Scaling of fractal basin boundaries near intermittency transitions to chaos, Phys. Rev. A 40 (1989), 1576-1581.

 

8. W. L. Ditto, S. Rauseo, R. Cawley, C. Grebogi, G. H. Hsu, E. Kostelich, E. Ott, H. T. Savage, R. Segnan, M. Spano and J. A. Yorke, Experimental observation of crisis-induced intermittency and its critical exponent, Phys. Rev. Lett. 63 (1989), 923-926.

 

9. E. J. Kostelich and J. A. Yorke, Using dynamic embedding methods to analyze experimental data, Contemp. Math. 99 (1989), 307-312.

 

 

1990

 

1. I. Kramer, E. D. Yorke and J. A. Yorke, Modelling non-monogamous heterosexual transmission of AIDS, Math. Comput. Modelling 13 (1990) 99-107.

 

2. E. Kostelich and J. A. Yorke, Noise reduction: Finding the simplest dynamical system consistent with the data, Physica D 41 (1990), 183-196.

 

3. I. Kan and J. A. Yorke, Antimonotonicity: Concurrent creation and annihilation of periodic orbits, Bull. Amer. Math. Soc. 23 (1990), 469-476. Announcement of #1992-1.

 

4. C. Grebogi, S. M. Hammel, J. A. Yorke and T. Sauer,

Shadowing of physical trajectories in chaotic dynamics: Containment and refinement, Phys. Rev. Lett. 65 (1990), 1527-1530.

 

5. T. Shinbrot, E. Ott, C. Grebogi and J. A. Yorke, Using chaos to direct trajectories to targets, Phys. Rev. Lett. 65 (1990), 3215-3218.

 

6. E. Ott, C. Grebogi and J. A. Yorke, Controlling chaos, Phys. Rev. Lett. 64 (1990), 1196-1199.

 

7. M. Ding, C. Grebogi, E. Ott and J. A. Yorke, Transition to chaotic scattering, Phys. Rev. A, 42 (1990), 7025-7040.

 

8. I. Kramer, J. A. Yorke and E. D. Yorke,

The AIDS epidemic's influence on New York City's gay sexual contact rate from an analysis of gonorrhea incidence, Math. Comput. Modelling 13 (l990), 21-25.

 

1991

 

1. M. Ding, C. Grebogi, E. Ott and J. A. Yorke, Massive bifurcation of chaotic scattering, Phys. Letters 153A (1991), 21-26.

 

2. J. A. Kennedy and J. A. Yorke, Basins of Wada, Physica D 51 (l991), 213-225.

 

3. H. E. Nusse and J. A. Yorke, Analysis of a procedure for finding numerical trajectories close to chaotic saddle hyperbolic sets, Ergodic Theory and Dyn. Sys., 11 (1991), 189-208.

 

4. B. Hunt and J. A. Yorke, Smooth dynamics on Weierstrass nowhere differentiable curves, Trans. Amer. Math. Soc., 325 (l991), 141-154.

 

5. T. Sauer and J. A. Yorke, Rigorous verification of trajectories for the computer simulation of dynamical systems, Nonlinearity 4 (1991), 961-979.

 

6. T. Sauer, J. A. Yorke and M. Casdagli, Embedology, J. Stat. Phys., 65 (1991), 579-616.

 

7. Z.-P. You, E. J. Kostelich and J. A. Yorke,

Calculating stable and unstable manifolds,
Int. J. Bifurcation and Chaos 1 (1991), 605-623.

 

8. K. Alligood, L. Tedeschini and J. A. Yorke, Metamorphoses: Sudden jumps in basin boundaries, Comm. Math. Phys., 141 (1991), 1-8.

 

9. H. E. Nusse and J. A. Yorke, A numerical procedure for finding accessible trajectories on basin boundaries, Nonlinearity, 4 (1991), 1183-1212.

 

 

1992

 

1. I. Kan, H. Kocak and J. A. Yorke, Antimonotonicity: Concurrent creation and annihilation of periodic orbits, Annals of Mathematics 136 (1992), 219-252.

 

2. H. E. Nusse and J. A. Yorke,
Border collision bifurcations including period two to period three bifurcation for piecewise smooth systems, Physica D. 57 (1992), 39-57.

 

3. S. P. Dawson, C. Grebogi, J. A. Yorke, I. Kan and H. Kocak, Antimonotonicity: Inevitable reversals of period-doubling cascades, Phys. Letters A 162 (l992), 249-254.

 

4. T. Shinbrot, C. Grebogi, J. Wisdom and J. A. Yorke,

Chaos in a double pendulum, Am. J. Phys., 60 (1992), 491-499.

 

5. T. Shinbrot, E. Ott, C. Grebogi and J. A. Yorke, Using chaos to direct orbits to targets in systems describable by a one-dimensional map,

Phys. Rev. A., 45 (l992), 4165-4168.

 

6. T. Shinbrot, C. Grebogi, E. Ott and J. A. Yorke,
Using chaos to target stationary states of flows,
Phys. Letters A 169, (1992), 349-354.

 

7. T. Shinbrot, W. Ditto, C. Grebogi, E. Ott, M. Spano and J. A. Yorke,
Using the sensitive dependence of chaos (the Butterfly Effect) to direct orbits to targets in an experimental chaotic system, Phys. Rev. Lett. 68 (1992), 2863-2866.

 

8. H. E. Nusse and J. A. Yorke, The equality of fractal dimension and uncertainty dimension for certain dynamical systems,
Comm. Math. Phys. 150 (1992), 1-21.

 

9. K. T. Alligood and J. A. Yorke, Accessible saddles on fractal basin boundaries, Ergodic Theory and Dyn. Sys. 12 (1992), 377-400.

 

10. D. Auerbach, C. Grebogi, E. Ott and J. A. Yorke, Controlling chaos in high dimensional systems, Phys. Rev. Lett. 69 (1992), 3479-3482.

 

11. J. A. Alexander, J. A. Yorke, Z-P. You and I. Kan, Riddled Basins, Int. J. Bifurcation & Chaos 2 (1992), 795-813.

 

12. B. Hunt, T. Sauer and J. A. Yorke,
Prevalence: a translation-invariant "almost every" on infinite dimensional spaces, Bull. Amer. Math. Soc. 27 (1992), 217-238.

 

Addendum: Bull. Amer. Math. Soc. 28 (1993), 306-307.

 

 

1993

 

1. E. J. Kostelich, C. Grebogi, E. Ott and J. A. Yorke, Higher dimensional targeting, Phys. Rev. E 47 (1993) 305-310.

 

2. T. Shinbrot, C. Grebogi, E. Ott and J. A. Yorke, Using small perturbations to control chaos, Nature, 363 (1993), pp. 411-417.

 

3. M. Ding, C. Grebogi, E. Ott, T. Sauer and J. A. Yorke,
Plateau onset for correlation dimension: When does it occur?, Phys. Rev. Lett. 70 (1993), pp. 3872-3873.

 

4. B. R. Hunt and J. A. Yorke,

Maxwell on Chaos, Nonlinear Science Today 3 (1993), pp. 2-4.

 

5. J.A.C. Gallas, C. Grebogi and J. A. Yorke, Vertices in Parameter Space: Double Crises Which Destroy Chaotic Attractors,

Phys. Rev. Lett 71 (1993), pp. 1359-1362.

 

6. T. Sauer and J. A. Yorke, How many delay coordinates do you need?,

Int. J. of Bifurcation and Chaos, 3 (1993) 737-744.

 

7. Y-C. Lai, C. Grebogi, J. A. Yorke and I. Kan, How often are chaotic saddles nonhyperbolic?, Nonlinearity, 6 (1993), 779-797.

 

8. M. Ding, C. Grebogi, E. Ott, T. Sauer and J. A. Yorke,
Estimating correlation dimension from a time series: when does plateau onset occur?,

Physica D, 69 (1993), 404-424.

 

9. E. Ott, J. C. Sommerer, J. Alexander, I. Kan and J. A. Yorke,
Scaling behavior of chaotic systems with riddled basins,
Phys. Rev. Lett., 71 (1993), 4134-4137.

 

10. S. P. Dawson, C. Grebogi, H. Kocak and J. A. Yorke, A geometric mechanism for antimonotonicity in scalar maps with two critical points, Phys. Rev. E 48 (1993), 1676-1682.

 

11. B. R. Hunt, I. Kan and J. A. Yorke,
When Cantor sets intersect thickly,
Trans. Amer. Math. Soc., 339 (1993), Number 2, 869-888.

 

1994

 

1. A. Lasota and J. A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random & Computational Dynamics, 2 (1) (1994), 41-77.

 

2. J. A. Kennedy and J. A. Yorke, Pseudocircles in Dynamical systems, Trans. Amer. Math. Soc. (1994), 343, 349-366.

 

3. H. E. Nusse, E. Ott and J. A. Yorke,
Border-Collision Bifurcations: an explanation for observed bifurcation phenomena,
Phys. Rev. E, 49 (1994), 1073-1076.

 

4. E. Ott, J. Alexander, I. Kan, J. Sommerer and J. A. Yorke,
Transition to chaotic attractors with riddled basins,
Physica D., 76 (1994), pp. 384-410.

 

5. S. P. Dawson, C. Grebogi, T. Sauer and J. A. Yorke,

Obstructions to shadowing when a Lyapunov exponent fluctuates about zero, Phys. Rev. Lett., 73, (1994), pp. 1927-1930.

 

 

1995

 

1. E. Barreto, E. J. Kostelich, C. Grebogi, E. Ott and J. A. Yorke, Efficient switching between controlled unstable periodic orbit in higher dimensional chaotic systems, Phys. Rev. E, 51 (1995), #5, pp. 4169-4172.

 

2. A. Pentek, Z. Torozakai, and T. Tel, C. Grebogi and J. A. Yorke, Fractal boundaries in open hydrodynamical flows: signatures of chaotic saddles, Phys. Rev. E., 51 (1995), #5, pp. 4076-4088.

 

3. H. E. Nusse and J. A. Yorke,

Border-collision bifurcations for piecewise smooth one-dimensional maps,

Int. J. Bifurcation and Chaos, 5 (1995), No. 1, pp. 189-207.

 

4. I. Kan, H. Kocak and J. A. Yorke, Persistent Homoclinic Tangencies in the Henon Family, Physica D, 83 (1995), pp. 313-325.

 

5. J. A. Kennedy and J. A. Yorke, Bizarre Topology is Natural in Dynamical Systems, Bull. Amer. Math. Soc., 32, #3 (1995), pp. 309-316.

 

6. H. E. Nusse, E. Ott and J. A. Yorke, Saddle-node bifurcations on fractal basin boundaries, Phys. Rev. Lett., 75 (1995). 2482-2485.

 

7. H. B. Stewart, Y. Ueda, C. Grebogi and J. A. Yorke, Double crises in two parameter dynamical systems, Phys. Rev. Lett., 75 (1995). 2478-2481.

 

8. L. Salvino, R. Cawley, C. Grebogi and J. A. Yorke, Predictability in time series, Phys. Letters A, 209 (1995), pp. 327-332.

 

9. C. S. Daw, C.E.A. Finney, M. Vasudevan, N. A. van Goor, K. Nguyen, D. C. Bruns, E. J. Kostelich, C. Grebogi, E. Ott and J. A. Yorke,
Self organization and chaos in a fluidized bed,
Phys. Rev. Lett. (1995), 75, #12, pp. 2308-2311.

 

 

1996

 

1. H. E. Nusse and J. A. Yorke,
Wada basin boundaries and basin cells, Physica D, 90 (1996), pp. 242-261.

 

2. H. E. Nusse and J. A. Yorke,
Basins of attraction, Science (1996), 271, pp. 1376-1380.

 

3. A. Lasota and J. A. Yorke,
When the long-time behavior is independent of the initial density,
SIAM J. of Math. Anal., (1996), 27, #1, pp. 221-240.

 

4. Y. Lai, C. Grebogi, J. A. Yorke and S. Venkataramani,

Riddling bifurcations in chaotic dynamical systems,
Phys. Rev. Lett., 77 (1996), pp. 55-58.

 

5. U. Feudel, C. Grebogi, B. Hunt and J. A. Yorke, A map with more than 100 coexisting low-period, periodic attractors,
Phys. Rev. E. (1996) 54, pp. 71-81.

 

6. E. Kostelich, J. A. Yorke and Z. You,
Plotting stable manifolds: error estimates and noninvertible maps,
Physica D 93 (1996), pp. 210-222.

 

7. B. Peratt and J. A. Yorke, Continuous avalanche mixing of granular solids in a rotating drum, Europhys. Lett. (1996), 35, pp. 31-35.

 

8. B. Hunt, E. Ott and J. A. Yorke, Fractal dimensions of chaotic saddles of dynamical systems, Phys. Rev. E., (1996), 54, pp. 4819-4823.

 

9. J. A. Kennedy and J. A. Yorke,
Pseudocircles, diffeomorphisms, and perturbable dynamical systems, Ergodic Theory and Dyn. Sys. (1996), 16, pp. 1031-1057.

 

10. D. Auerbach and J. A. Yorke,
Controlling chaotic fluctuations in semiconductor laser arrays,
J. Optical Soc. Amer. B (1996), 13, #10, pp. 2178-2187.

 

11. B. Hunt, K. M. Khanin, Y. G. Sinai and J. A. Yorke,
Fractal properties of critical invariant curves,
J. Stat. Phys. (1996), 85, pp. 261-276.

 

12. J. C. Alexander, B. Hunt, I. Kan and J. A. Yorke,
Intermingled basins for the triangle map,
Ergodic Theory and Dyn. Sys. (1996), 16, pp. 651-662.

 

1997

 

1. M. Sanjuan, J. A. Kennedy, C. Grebogi and J. A. Yorke, Indecomposable continua in dynamical systems with noise: fluid flow past an array of cylinders,
Int. J. Bifurcation & Chaos (1997) 7(1), pp. 125-138.

 

2. B. Hunt, E. Ott and J. A. Yorke,

Differentiable generalized synchronism of chaos,
Phys. Rev. Lett. E. (1997), 55, # 4, pp. 4029-4034.

 

3. H. E. Nusse and J. A. Yorke,
The structure of basins of attraction and their trapping regions,
Ergodic Theory and Dyn. Sys., (1997), 17, pp. 463-482.

 

4. E. Barreto, B. Hunt, C. Grebogi, and J. A. Yorke,
From high dimensional chaos to stable periodic orbits,
Phys. Rev. Lett., (1997), 78, #24, pp. 4561-4564.

 

5. W. Chin, B. Hunt and J. A. Yorke,
Correlation dimension for iterated function systems,
Trans. Amer. Math. Soc. (1997), Vol 349, Number 5, 1783-1796.

 

6. Z. Toroczkai, G. Karolyi, A. Pentek, T. Tel, C. Grebogi and J. A. Yorke, Wada dye boundaries in open hydrodynamical flows,
Physica A., (1997), 239, pp. 235-243.

 

7. T. Sauer, C. Grebogi, and J. A. Yorke,
How long do numerical chaotic solutions remain valid?,
Phys. Rev. Lett., (1997), 79, #1, pp. 59-62.

 

8. J. A. Kennedy and J. A. Yorke,

The topology of stirred fluids,
Topology and Its Applications, (1997), 80, pp. 201-238.

 

9. T. Sauer and J. A. Yorke, Are the dimensions of a set and its image equal under typical smooth functions?,

Ergodic Theory and Dyn. Sys., (1997), 17, pp. 941-956.

 

10. M. Sanjuan, J. A. Kennedy, E. Ott and J. A. Yorke, Indecomposable continua and the characterization of strange sets in nonlinear dynamics, Phys. Rev. Lett., (1997), 78, pp. 1892-1895.

 

11. J. Jacobs, E. Ott, T. Antonsen, and J. A. Yorke,

Modelling fractal entrainment sets of tracers advected by chaotic temporarily irregular fluid flows using random maps,
Physica D110, (1997), 1-17.

 

12. E. Kostelich, I. Kan, C. Grebogi, E. Ott And J. A. Yorke,

Unstable dimension variability: a source of nonhyperbolicity in chaotic systems,
Physica D 109 (1997), 81-90.

 

 

1998

 

1. C. Schroer, T. Sauer, E. Ott and J. A. Yorke, Predicting chaos most of the time from embeddings with self-intersections, Phys. Rev. Lett. (1998), 80, 1410-1413.

 

2. U. Feudel, C. Grebogi, L. Poon and J. A. Yorke, Dynamical properties of a simple mechanical system with a large number of coexisting periodic attractors,
Chaos, Solutions and Fractals, (1998), 9, 171-180.

 

3. S. Banerjee, J. A. Yorke and C. Grebogi,
Robust chaos,

Phys. Rev. Lett. (1998), 80, pp. 3049-3052.

 

4. C. Robert, K. T. Alligood, E. Ott and J. A. Yorke,
Outer tangency bifurcations of chaotic sets,
Phys. Rev. Lett. (1998), 80, pp. 4867-4870.

 

5. G.-H. Yuan, S. Banerjee, E. Ott and J. A. Yorke,
Border-collision bifurcations in the Buck Converter, IEEE Trans. Circuits and Systems-I: Fund. The. and Appl. (1998), 45, #7, pp. 707-716..

 

6. C. Schroer, E. Ott and J. A. Yorke,
The effect of noise on nonhyperbolic chaotic attractors,
Phys. Rev. Lett. (1998), 81. #7. Pp. 1397-1400.

 

7. B. Peratt and J. A. Yorke,
Modelling continuous mixing of granular solids in a rotating drum,
Physica D 118, (1998), pp. 293-310.

 

8. K. Alligood and J. A. Yorke, Rotation intervals for chaotic sets,
Proc. Amer. Math. Soc., (1998), 126, #9, pp. 2805-2810.

 

9. T. Sauer, J. Tempkin and J. A. Yorke,
Spurious Lyapunov exponents in attractor reconstruction,
Phys. Rev. Lett., (1998), 81, #20, pp.4341-4344.

 

10. J. A. Kennedy and J. A. Yorke,
Dynamical system topology preserved in the presence of noise,
Turkish J. Math, 22 (1998), p. 379.

 

 

1999

 

1. B. Hunt, J. Gallas, C. Grebogi, J. A. Yorke and H. Kocak,
Bifurcation rigidity, Physica D 129, (1999), pp. 35-56.

 

2. J. A. Kennedy, M.A.F. Sanjuan, J.A. Yorke, and C. Grebogi,
The Topology of Fluid Flow Past a Sequence of Cylinders,
Topology and Its Applications, 94, (1999), pp. 207-242.

 

3. D. Sweet, E. Ott and J.A. Yorke, Topology in chaotic scattering,
Nature 399 (May 27, 1999), #6734, pp. 315-316.

 

4. T. Sauer and J.A. Yorke,
Reconstructing the Jacobian from data with observational noise,
Phys. Rev. Lett., 83 (1999), #7, pp. 1331-1334.

 

5. M. Dutta, H.E. Nusse, E. Ott, J.A. Yorke and G.-C. Yuan,
Multiple attractor bifurcations: a source of unpredictability in piecewise smooth systems,
Phys. Rev. Lett., 83 (1999), #21, pp. 4281-4284.

 

6. G.-C. Yuan and J. A. Yorke,
An open set of maps for which every point is absolutely nonshadowable,
Proc. Amer. Math. Soc., 128 (1999), #3, pp. 909-918.

 

 

2000

 

1. J. R. Miller and J.A. Yorke,
Finding all periodic orbits of maps using Newton methods: Sizes of basins, PhysicaD 135 (2000), pp. 195-211.

 

2. G.-C. Yuan and J.A. Yorke,
Collapsing of chaos in one-dimensional maps,
PhysicaD 136 (2000), pp. 18-30.

 

3. H. E. Nusse and J. A. Yorke,
Fractal Basin Boundaries Generated by Basin Cells and the Geometry of Mixing Chaotic Flows,
Phys. Rev. Lett., 84 (2000)#4, pp. 626-629.

 

4. S. Banerjee, M.S. Karthik, G.-H. Yuan and J.A. Yorke,
Bifurcations in On-Dimensional Piecewise Smooth Maps Theory and Applications in Switching Circuits,
IEEE Transactions on Circuits and Systems-I,
47, #3 (2000) pp. 389-394.

 

5. C. Robert, K. Alligood, E. Ott and J.A. Yorke,
Explosions of Chaotic Sets,
Physica D,
144 (2000), pp. 44-61.

 

6. Y.Z. Xu, Q. Ouyang, J.G. Wu, J.A. Yorke, G.X. Xu, D.F. Xu, R.D. Soloway and J.Q. Ren,
Using Fractal to Solve the Multiple Minima Problem in Molecular Mechanics Calculation,
Journal of Computational Chemistry, 21, #12 (2000), pp. 1101-1108.

 

7. S. Guharay, B.R. Hunt, J.A. Yorke, and O.R. White,
Correlations in DNA sequences across the three domains of life,
Physica D 146 (2000), pp. 388-396.

 

8. G.-C. Yuan, J.A. Yorke, T.L. Caroll, E. Ott, L.M. Pecora,
Testing whether two chaotic one dimensional processes are dynamically identical,
Phys. Rev. Lett. 85, (2000), #20 pp. 4265-4268.

 

 

2001

 

1. J. A. Kennedy and J.A. Yorke,
Topological horseshoes,
Trans. Amer. Math. Soc. 353, (2001), #6, pp. 2513-2530.

 

2. D.J. Patil, B.R. Hunt, E. Kalnay, J.A. Yorke, and E. Ott,
Local Low Dimensionality of Atmospheric Dynamics,
Phys. Rev. Lett. 86, (2001), #26, pp. 5878-5881.

 

3. J. A. Kennedy, S. Kocak and J.A. Yorke,
The chaos lemma,
The Amer. Math. Monthly,
108 (2001), #5, pp. 411-423.

 

4. D. Sweet, H.E. Nusse and J.A. Yorke,
Stagger and step method: detecting and computing chaotic saddles in higher dimensions,
Phys. Rev. Lett. 86, (2001), PP. 2261-2264.

 

 

2002

 

1. C. Grebogi, L. Poon, T. Sauer, J.A. Yorke and D. Auerbach,
Shadowability of chaotic dynamical systems,
Handbook of Dyn. Systems,
2, Ch. 7, pp. 313-344.

 

2. J. A. Tempkin and J. A. Yorke,
Measurements of a Physical Process Satisfy a Difference Equation,
J. Difference Eq. & Appl., 8 (2002), p. 13.

 

3. K. Alligood, E. Sander, and J. Yorke,
Explosions: global bifurcations at heteroclinic tangencies,
Ergodic Theory and Dynamical Systems, Volume 22, Issue 4, Pages 953-972, 2002.

 

Proceedings:

I. Szunyogh, A.V. Zimin, D.J. Patil, B.R. Hunt, E. Kalnay, E. Ott, and J.A. Yorke,
On the Dynamical Basis of Targeting Weather Observations,
Proceedings on Symposium on Observations,
Data Assimilation, and Probabilistic Prediction, Amer. Met. Soc. Jan. 13-17, 2002 Orlando Fl.

 

2003

 

1. William Ott and James A. Yorke,
Learning About Reality From Observation,
SIAM Journal on Applied Dynamical Systems, 297-322, 2, 2003.

 

2. M. Corazza, E. Kalnay, D.J. Patil, S.-C. Yang, R. Morss, M. Cai, I. Szunyogh, B.R. Hunt, and J.A. Yorke,

Use of the Breeding Technique to Estimate the Structure of Analysis "Errors of the Day",
Nonlinear Processes in Geophysics,
Nonlinear Processes in Geophysics, 10, pp. 233-243, 2003.

 

3. H. E. Nusse and J. A. Yorke,
Characterizing the basins with the most entangled boundaries,
Ergodic Theory and Dyn. Sys., 23 (2003). 895-906.

 

4. J.A. Kennedy and J.A. Yorke,
Generalized Hénon difference equations with delay,
Universitatis Iagellonicae Acta Mathematica, XLI (2003), 9-28.

 

2004

 

1. BR Hunt, E. Kalnay, E.J. Kostelich, E. Ott, DJ Patil, T. Sauer, I. Szunyogh, JA Yorke, and A.V. Zimin,

Four-Dimensional Ensemble Kalman Filtering, Tellus 56A, (2004), 273-277.

 

2. M. Brin, W. Ott, and J. A. Yorke, Enveloping manifolds, Topology and its Applications, 145 (2004), 233-239

 

3. E. Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza, E. Kalnay, D. J. Patil, J. A. Yorke,

A local ensemble Kalman Filter for atmospheric data assimilation.
Tellus 56A (2004), 415-428.


4. Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza, E. Kalnay, D. J. Patil, and J. A. Yorke,

Estimating the state of large spatio-temporally chaotic systems,
Phys. Lett. A., 330, (2004) 365-370.

 

5. Michael Roberts, Brian R. Hunt, James A. Yorke, Randall Bolanos, and Art Delcher,

A Preprocessor for Shotgun Assembly of Large Genomes,
J Comput Biol. 2004;11(4),734-52

 

6. Michael Roberts, Wayne Hayes, Brian R. Hunt, Stephen M. Mount, James A. Yorke,
Reducing storage requirements for biological sequence comparison  [Minimizers], Bioinformatics, Dec 2004; 20: 3363 - 3369.

 

7. I. Frommer, E. Harder, B. Hunt, R. Lance, E. Ott and J. Yorke,
Modeling Congested Internet Connections, Proceedings of the IASTED International Conference on Communications and Computer Networks (Nov 2004), Cambridge, MA, 2004, 319-324. (This conference referees papers before they are accepted for presentation.)


Proceedings:

T. Sauer, J.A. Yorke, A.V. Zimin, E. Ott, E.J. Kostelich, I. Szunyogh, G. Gyarmati, E. Kalnay, D.J. Patil,

4D Ensemble Kalman Filtering for Assimilation of Asynchronous Observations, Submitted to AMS Proceedings 2004 (a proceedings published on disk so no page numbers exist).

 

Proceedings:

I. Szunyogh, E.J. Kostelich, G. Gyarmati, B.R. Hunt, E. Ott, A.V. Zimin, E. Kalnay, D.J. Patil, and J.A .Yorke,

A Local Ensemble Kalman Filter for the NCEP GFS Model, Amer. Met. Soc. Proceedings 2004 (a proceedings published on disk so no page numbers exist).

 

 

2005

 

1. I. Szunyogh, E. J. Kostelich, G. Gyarmati, D. J. Patil, B. R. Hunt, E. Kalnay, E. Ott, and J. A. Yorke,

Assessing a local ensemble Kalman filter: Perfect model experiments with the NCEP global model,
Tellus 57A (2005) pp 528-545.


2. Brandy L. Rapatski, Frederick Suppe, and James A. Yorke,
HIV Epidemics Driven by Late Disease-Stage Transmission,
JAIDS, Journal of Acquired Immune Deficiency Syndromes, 38, 2005, 241-253.

 

3. John Harlim, Mike Oczkowski, James A. Yorke, Eugenia Kalnay, and Brian R. Hunt,
Convex Error Growth Patterns in a Global Weather Model,
Phys. Rev. Lett. 94 (2005), 228501:1-4.

 

4. William Ott and J. A. Yorke,
Prevalence, Bull. Amer. Math. Soc. 42 (2005), 263-290.

 

5. Steven L. Salzberg and James A. Yorke,
Beware of mis-assembled genomes,
Letter to the editor, (2005) V 21 (no. 24): 4320-4321 Bioinformatics.

 

6. R. Lance, I. Frommer, B. R. Hunt, E. Ott, J. A. Yorke, E. Harder,
Round-trip time inference via passive monitoring,
Proc. of the Workshop on Large Scale Network Inference (LSNI):
Methods, Validation, and Applications, ACM SIGMETRICS (June 2005, Banff, Alberta, Canada).

 

7. J. Yorke, Chaos, New Scientist, 187 (Sept. 17, 2005), p. 37 (very short paper)

 

 

2006

 

1. Brandy L. Rapatski, Frederick Suppe, and James A. Yorke,
Reconciling different infectivity estimates for HIV-1,
JAIDS, Journal of Acquired Immune Deficiency Syndromes, Volume 43(3) 1 November 2006 pp 253-256.

 

2. C.M. Danforth, J.A. Yorke,
Making Forecasts for Chaotic Physical Processes,
Phys. Rev. Lett., 96, 144102 (2006).

 

 

3. Joseph D. Skufca, James A. Yorke, and Bruno Eckhardt,
The edge of chaos in a parallel shear flow,
Phys. Rev. Lett. 96 (2006), p. 174101.

 

4. K.T. Alligood, E. Sander, and J.A. Yorke,

Crossing bifurcations and unstable dimension variability,

Phys. Rev. Lett. 96 (2006), p. 244103.

 

2007

 

1. K.T. Alligood, E. Sander, J.A. Yorke,

Explosions in dimensions one through three,
Rend. Sem. Mat. Univ. Pol. Torino - 65, 1 (2007), pp 1-15. This special issue was entitled “Subalpine Rhapsody in Dynamics”

 

2. Tobias M. Schneider, James A. Yorke, and Bruno Eckhardt,

Turbulence Transition and the Edge of Chaos in Pipe Flow,
Phys. Rev. Lett. 99, 034502 (2007).

 

3. Aleksey V Zimin, Douglas R. Smith, Granger Sutton, James A. Yorke,

Assembly Reconciliation, Bioinformatics 24 (2007) 42-45.

Bioinformatics 2008 24(1):42-45; doi:10.1093/bioinformatics/btm542

published online Dec 2007.

 

4. Joshua A. Tempkin & J. A. Yorke, Spurious Lyapunov Exponents Computed from Data,

SIAM J. Appl. Dyn. Syst. (SIADS) 6, 457-474 (2007)

 

5. J. Kennedy and J.A. Yorke,
Shadowing in Higher Dimensions,
Differential Equations, Chaos and Variational Problems, V. Staicu (Ed.), Birkhäuser, pp. 241-246, 2008.

 

6.  Drosophila 12 Genome Consortium, 450 authors including A. Zimin and J.A. Yorke,

Evolution of genes and genomes on the Drosophila phylogeny,

Nature 203-218, Vol 450, 8 Nov 2007.

 

7. Helena E. Nusse and J. A. Yorke,
Bifurcations of attraction from the view point of prime ends,

Topology and its Applications Volume 154, Issue 13, 1 July 2007, Pages 2567-2579,

The Proceedings of the US–Polish International Workshop on Geometric Methods in Dynamical Systems

 

8. J. Kennedy, D.R. Stockman, J.A. Yorke,

Inverse limits and an implicitly defined difference equation from economics,

Topology and its applications, 154 (2007), 2533-2553.

9. David D. Kuhl, Istvan Szunyogh, Eric J. Kostelich, D. J. Patil, Gyorgyi Gyarmati, Michael Oczkowski, Brian R. Hunt, Eugenia Kalnay, Edward Ott, and James A. Yorke,

Assessing Predictability with a Local Ensemble Kalman Filter,
Journal of the Atmospheric Sciences, 64 (2007), No. 4, pages 1116–1140.

 

Proceedings.

Szunyogh, I., E. A. Satterfield, J. A. Aravequia, E. J. Fertig, G. Gyarmati, E. Kalnay, B. R. Hunt, E. J. Kostelich, D. D. Kuhl, E. Ott, and J. A. Yorke,

The Local Ensemble Transform Kalman Filter and its implementation on the NCEP global model at the University of Maryland.

Workshop Proceedings, Flow Dependent Aspects of Data Assimilation, June 11-13, 2007, 47-63.

 

 

 

2008

 

1. I. Szunyogh, E.J. Kostelich, G. Gyarmati, E. Kalnay, B. R. Hunt, E. Ott, E. Satterfield, J.A. Yorke,

A local ensemble transform Kalman filter data assimilation system for the NCEP global model, Tellus (2008), 60A, 113–130.

 

2. Michael Roberts, Aleksey V. Zimin, Wayne Hayes, Brian R. Hunt, Cevat Ustun, James R. White, Paul Havlak, and James Yorke,

Improving Phrap-based Assembly of the Rat Using “Reliable” Overlaps,

PLoS ONE. 2008; 3(3): article number e1836.

Published online 2008 March 19. doi: 10.1371/journal.pone.0001836

 

3. Samuel Zambrano, Miguel A. F. Sanju´an, James A. Yorke, Partial control of chaotic systems, a Rapid Communication in Physical Review E, Phys. Rev. E 77, 055201 (2008).

 

4. William Ott and James A. Yorke, When Lyapunov exponents fail to exist, PRE,

Phys. Rev. E 78, 056203 (2008) [6 pages]

 

5. Suzanne S. Sindi, Brian R. Hunt, and James A. Yorke,

Duplication Count Distributions in DNA Sequences,

Phys. Rev. E, 78, No.6, 061912, [11 pages]

 

6. J. A. Kennedy, D. R. Stockman, J. A. Yorke,
The inverse limits approach to chaos,

J. Math. Economics, 44(2008), 423-444.

 

7. James R. White; M. Roberts; J A Yorke, M. Pop,

Figaro: a novel statistical method for vector sequence removal,
Bioinformatics 24 (2008) 462-467.

 

8. Szunyogh, I, E. J. Kostelich, G. Gyarmati, E. Kalnay, B. R. Hunt, E. Ott, Elizabeth Satterfield, and J. A. Yorke,
A local ensemble transform Kalman filter data assimilation system for the NCEP global model, Tellus Series A – Dynamic Met. and Oceanography, 60 (2008) 113-130.

 

9. A. Deniz, J. Kennedy, S. Kocak, A. V. Ratiu, C. Ustun, J. Yorke,

Chaotic n-dimensional Euclidean and Hyperbolic Open Billiards and Chaotic Spinning Planar Billiards, SIAM J. Applied Dynamical Systems (SIADS), 7 (2008), 421-436.

 

2009

 

1. Russell D. Halper, Eric J. Harder, Brian R. Hunt, James A. Yorke,

Stability of TCP Dynamics in Large Data Networks, SIADS = SIAM Journal on Applied Dynamical Systems, (SIADS) 8 (2009) 146-159.

 

2. Aleksey V. Zimin, Arthur L. Delcher, Liliana Florea, David A. Kelley, Finian Hanrahan, Guillaume Marcais, Geo Pertea, Daniela Puiu, Michael Roberts, Michael C. Schatz, Poorani Subramanian, Curt Van Tassell, James A. Yorke, and Steven L. Salzberg,

A whole-genome assembly of the domestic cow, Bos taurus,

Genome Biology 2009, 10:R42.

 

3. E. Sander & J.A. Yorke, A classification of explosions in dimension one.

Ergodic Theory and Dynamical Systems, 29 (2009), 715-731.

4. Brandy Rapatski & James Yorke, Modeling HIV outbreaks: The male to female prevalence ratio in the core population, Mathematical Biosciences and Engineering, MBE 6 (2009), 135-143.

 

5. Ian Frommer, Eric Harder, Brian Hunt, Ryan Lance, Edward Ott, James Yorke,

Bifurcation and chaos in a periodically probed computer network,

International Journal of Bifurcation and Chaos, 19, No. 9 (2009) 3129–3141

 

6. Evelyn Sander and James A. Yorke,

Period-doubling cascades for large perturbations of Henon families,

Journal of Fixed Point Theory and Applications, 6(1): 153-163, 2009, DOI: 10.1007/s11784-009-0116-7

 

 

2010

 

1. Turkey paper:

Multi-platform Next Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis,

PLoS Biology. Published Sept 7 2010

Authors: Rami Dalloul, Julie Long, Aleksey Zimin, …, Geo Pertea,…, Daniela Puiu, …, Steven Salzberg, Michael Schatz, …, Curtis Van Tassell, …, James Yorke, …, and Kent Reed;

 

2. Madhura R. Joglekar, Evelyn Sander, and James A. Yorke,

Fixed points indices and period-doubling cascades.

Journal of Fixed Point Theory and Applications, 8 (2010) 151-176, DOI 10.1007/s11784-010-0029-5,

 

2011

 

1. Argentine Ant paper

A Draft Genome of the Globally Widespread and Invasive Argentine ant (Linepithema humile),
Proceedings of the National Academy (PNAS) advance pub,
doi:10.1073/pnas.1007901108, January 31, 2011

Volume: 108 Pages: 5673-5678  Published: APR 5 2011

Authors:Christopher Smith, followed by 48 names in alphabetical order incl.
James Yorke, Aleksey Zimin, and then Neil Tsutsui (UC Berkeley)

 

2. Evelyn Sander and James A. Yorke,
Period-doubling cascades galore, 
Ergodic Theory and Dynamical Systems, 31 (2011), 1249-1267


3. Steven L. Salzberg, Adam M. Phillippy, Aleksey Zimin, Daniela Puiu, Tanja Magoc, Sergey Koren, Todd Treangen, Michael C. Schatz, Arthur L. Delcher, Michael Roberts, Guillaume Marçais, Mihai Pop, and James A. Yorke

GAGE: a critical evaluation of genome assemblies and assembly algorithms
, Genome Research.


2012

 

1. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species,
Nature doi:10.1038/nature11041, Published online 16 May 2012
Butterfly mimicry
Species: Postman butterfly, Heliconius melpomene
Genome size: 295 million base pairs

Authors: The Heliconius Genome Consortium: Kanchon K. Dasmahapatra, James R. Walters, Adriana D. Briscoe, …, Aleksey V. Zimin, …, Steven L. Salzberg, …, James A. Yorke, …,Stephen Richards, James Mallet, W. Owen McMillan & Chris D. Jiggins

 

2. Evelyn Sander and James A. Yorke,

Connecting period-doubling cascades to chaos,

the International Journal of Bifurcation and Chaos (IJBC), 22 Feb 2012..

DOI No: 10.1142/S0218127412500228  Article Number: 1250022  

 

3. Aleksey V. Zimin, David R. Kelley, Michael Roberts, Neza Vodopivec, Steven L. Salzberg, JA Yorke

Mis-assembled “Segmental duplications” in two versions of the Bos taurus genome

PLoS ONE 7(8): e42680. doi:10.1371/journal.pone.0042680

 

4. Juan Sabuco, Samuel Zambrano, Miguel A.F. Sanjuán, James A. Yorke.
Finding safety in partially controllable chaotic systems

Communications in Nonlinear Science and Numerical Simulation, Volume 17, Issue 11, November 2012, Pages 4274–4280.

 

5. Juan Sabuco, Miguel A. F. Sanjuan, and James A. Yorke, Dynamics of Partial Control. Chaos 22, 047507 (2012). published online 14 December 2012. http://dx.doi.org/10.1063/1.4754874 (9 pages).

 

 

2013

 

1. Aleksey Zimin, Guillaume Marçais, Daniela Puiu, Michael Roberts, Steven L. Salzberg, and J. A. Yorke.
The MaSuRCA Genome Assembler, Oxford Bioinformatics, Bioinformatics (2013)doi:10.1093/bioinformatics/btt476.

 

2. Evelyn Sander and James A. Yorke,

A Period-Doubling Cascade Precedes Chaos for Planar Maps,

Chaos 23, 033113 (2013); http://dx.doi.org/10.1063/1.4813600

3. James T. Halbert and James A. Yorke,

Modeling a chaotic machine’s dynamics as a linear map on a “square sphere”,

Topology Proceedings 44 (2014) 257-284. (E-published on November 25, 2013)

 

 

 2014

1. David B Neale, Jill L Wegrzyn, Kristian A Stevens, Aleksey Zimin, Daniela Puiu, Marc Crepeau, Charis Cardeno, Maxim Koriabine, Aann E Holtz-Morris, John D Liechty, Pedro J Martínez-García, Hans A Vasquez-Gross, Brian Y Lin, Jacob J Zieve, William M Dougherty, Sara Fuentes-Soriano, Le-Shin Wu, Don Gilbert, Guillaume Marçais, Michael Roberts, Carson Holt, Mark Yandell, John M Davis, Kathleen Smith, Jeff FD Dean, Walter W Lorenz, Ross W Whetten, Ronald Sederoff, Nicholas Wheeler, Patrick E McGuire, Doreen Main, Carol A Loopstra, Keithanne Mockaitis, Pieter J deJong, James A Yorke, Steven L Salzberg, Charles H Langley,

Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies,
Genome biology 15 (3), R59 (2014)

 

2. Pine Annotation paper: 

Unique Features of the Loblolly Pine Pinus taeda L. Megagenome Revealed Through Sequence Annotation,

Jill L. Wegrzyn, John D. Liechty, Kristian A. Stevens, Le-Shin Wu, Carol A. Loopstra, Hans Vasquez-Gross, William M. Dougherty, Brian Y. Lin, Jacob J. Zieve, Pedro J. Martínez-García, Carson Holt, Mark Yandell, Aleksey Zimin, James A. Yorke, Marc Crepeau,§ Daniela Puiu, Steven L. Salzberg, Pieter de Jong, Keithanne Mockaitis, Doreen Main, Charles H. Langley, David B. Neale.
Genetics 196 (3), 891-909

 

 

3. AV Zimin, KA Stevens, …, J Yorke, C Langley,

Sequencing and assembly of the 22-Gb loblolly pine genome,

Genetics 196 (3), 875-890

 

4. Madhura Joglekar, Edward Ott and James A. Yorke,

Scaling of Chaos versus Periodicity: How Certain is it that an Attractor is Chaotic?,

PRL 113, 084101 (2014)  DOI: 10.1103/PhysRevLett.113.084101

Phys. Rev. Lett., (selected as a PRL Editors’ Suggestion)

 

5. A new rhesus macaque genome for studies of expression, genetics and evolution,

Aleksey Zimin1, Adam Cornish2, Mnirnal D. Maudhoo2, Robert M. Gibbs2, Xiongfei Zhang2, Sanjit Pandey2, Daniel T. Meehan2, Kristin Wipfler2, Steven E. Bosinger3, Zachary P. Johnson3, Gregory K. Tharp3, Guillaume Marçais1, Michael Roberts1, Betsy Ferguson4, Julien S. Gradnigo5, Etsuko N. Moriyama5, Howard Fox7, Todd Treangen6, Steven L. Salzberg6, James A. Yorke1, Robert B. Norgren, Jr.2,
Biology Direct.
9, 20, 2014

 

2015

 

1. E. Sander and J.A. Yorke,
The Many Facets of Chaos,

The International Journal of Bifurcation and Chaos (IJBC), in press (front cover)

Int. J. Bifurcation Chaos 25,(2015) 1530011

 

2. Madhura Joglekar, Edward Ott and James A. Yorke,

Uncertainty in whether or not a system has a chaotic attractor,
Nonlinearity 28 (2015) 3803–3820

 

3. Madhura Joglekar and James A. Yorke,
Robustness of periodic orbits in the presence of noise,

2015 Nonlinearity 28 697-711 doi:10.1088/0951-7715/28/3/697

 

4. Madhura Joglekar, Ulrike Feudel, and James A. Yorke,
Geometry of the edge of chaos in a low-dimensional turbulent shear flow model,
Physical Review E 91, 052903 (2015)2015_05_Marcais_Y_Zimin_PLOSone_QuorUM_Error Corrector.pdf

 

5. Marçais G, Yorke JA, Zimin A (2015)

QuorUM: An Error Corrector for Illumina Reads2015_04_Joglekar_Feudel_PhysRevE_Geometry_Edge_Chaos.pdf2015_04_Joglekar_Feudel_PhysRevE_Geometry_Edge_Chaos.pdf.

PLoS ONE 10(6): e0130821. doi:10.1371/journal.pone.0130821

 

6. Alvar Daza, Alexandre Wagemakers, Miguel A. F. Sanjuán & James A. Yorke
Testing for Basins of Wada,
Scientific Reports 5, Article number: 16579 
doi:10.1038/srep16579
http://www.nature.com/articles/srep16579#close

 

2016

 

1. Suddhasattwa Das and James A. Yorke,
Avoiding extremes using Partial Control
Journal of Difference Equations and Applications,22, 2016,
217-234

DOI:10.1080/10236198.2015.1079181


2.
Atlantic salmon genome provides insights into rediploidization,

Nature 533, 200–205 (12 May 2016) doi:10.1038/nature1716.

Sigbjørn Lien, …,Aleksey Zimin, , James A. Yorke,Alejandro Maass, … & William S. Davidson.

Abstract. The genome sequence is presented for the Atlantic salmon (Salmo salar), providing information about a rediploidization following a salmonid-specific whole-genome duplication event that resulted in an autotetraploidization.

3. Suddhasattwa Das, Chris B. Dock, Yoshitaka Saiki, Martin Salgado-Flores, Evelyn Sander, Jin Wu, and James A. Yorke (Note that 3 of the authors, CD, MS, JW were undergrads in an REU summer program),

Measuring quasiperiodicity,

Europhysics Letters, EPL 114 (2016) 40005.

 

4. S. Das, Y. Saiki, E. Sander, and J.A. Yorke.

Quasiperiodicity: Rotation Numbers,

In the book: The Foundations of Chaos Revisited: From Poincare to Recent Advancements, Chapter 7, 103-118, Springer Complexity, Switzerland, 2016,

DOI: 10.1007/978-3-319-29701-9. 

 

5. Sugar Pine 2016_01_Das_JDifEqn+Appl_Avoiding_extremes_partial_control.pdf2016_02_Zimin_Nature_Salmon_ rediploidization.pdf2016_03_Das_and_6_EPL_EuroPL_ Measuring_Quasiper B.pdf2016_06_Cashin_O_Psychiatric_Nursing_Overly_reg_thinking.pdf2017_07_Das_SIADS_Multi-chaos_from_Quasiperiodicity.pdf2016_07_Munoz_BMC_Genomics_ teams_of_transcriptional_factors.pdf

K.A. Stevens, J.L. Wegrzyn, A.Zimin, D.Puiu, M. Crepeau, C. Cardeno,, R. Paul, D. D. Gonzalez, M. Koriabine, A.E. Holtz-Morris, P.J. Martínez-García, U.U. Sezen, G. Marçais, K. Jermstad, P.E. McGuire, C.A. Loopstra,, P. deJong, J.A. Yorke, S.L. Salzberg, D.B. Neale, C.H. Langley

Sequence of the sugar pine megagenome

(transposable elements and White Pine Blister Rust resistance),

 

6. Andrew Cashin & JY

Overly regulated thinking and autism revisited.

Journal of Child and Adolescent Psychiatric Nursing 29 (2016) 148–153

 

7. Adriana Muñoz, Daniella Santos Munoz, Aleksey Zimin and James Yorke,

Evolution of transcriptional networks in yeast: alternative teams of transcriptional factors for different species

BMC Genomics 2016, 17 (Suppl 10):826 DOI 10.1186/s12864-016-3102-7

   Presented at the 14th RECOMB Satellite Conference on Comparative Genomics (RECOMB-CG 2016) in Montreal, Canada, from October 11-14, 2016.

 

 

2017

1. Aleksey V. Zimin, Daniela Puiu, Ming-Cheng Luo, Tingting Zhu, Sergey Koren, Guillaume Marçais, James A. Yorke, Jan Dvořák, and Steven L. Salzberg,

Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm,

Genome Research 27, 201710.1101/gr.213405.116

 

2. Ruben Capeans, Juan Sabuco, Miguel A. F. Sanjuan, and James A. Yorke,

Partially controlling transient chaos in the Lorenz equations,

Phil. Trans. R. Soc. A 375: 20160211. http://dx.doi.org/10.1098/rsta.2016.0211

 

3. Aleksey V. Zimin, Kristian A. Stevens, Marc W. Crepeau; Daniela Puiu; Jill L. Wegrzyn, James A. Yorke, Charles H. Langley, David B. Neale, Steven L. Salzberg.

An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing. 

GigaScience, a prepublication online announcement:

2017_04_Cashin_Autism-Open-Access_restricted-and-repetitivebehaviour.pdf

(2017) giw016. DOI: https://doi.org/10.1093/gigascience/giw016

 

4. Andrew Cashin James Yorke (2017)

Conceptualization of a Heuristic2015_06_Daza_Sanjuan_Nature_Sci_Reports_Testing_Wada.pdf2015_05_Marcais_Y_Zimin_PLOSone_QuorUM_Error Corrector.pdf to Predict Increase in Restricted and Repetitive Behaviour in ASD across the Short to Medium Term.

Autism Open Access 7:200. doi:10.4172/2165-7890.1000200

 

5. The Douglas-fir genome sequence reveals specialization of the photosynthetic apparatus in Pinaceae

David B. NealePatrick E. McGuireNicholas C. WheelerKristian A. StevensMarc W. CrepeauCharis CardenoAleksey V. ZiminDaniela PuiuGeo M. PerteaU. Uzay SezenClaudio CasolaTomasz E. KoralewskiRobin PaulDaniel Gonzalez-IbeasSumaira ZamanRichard CronnMark YandellCarson HoltCharles H. LangleyJames A. YorkeSteven L. Salzberg and Jill L. Wegrzyn

 

6. Y Saiki, E Sander, J Yorke,

Generalized Lorenz equations on a three-sphere

Eur. Phys. J. Special Topics 226, 1751–1764 (2017)

 

7. Suddhasattwa Das and James A Yorke.
Multi-chaos from Quasiperiodicity
SIAM Journal Applied Dynamical Systems (SIADS) 16, No. 4, pp. 2196-2212 (2017).


8. QQ 

Suddhasattwa Das, Yoshitaka Saiki, Evelyn Sander, James A Yorke
Quantitative Quasiperiodicity,

Nonlinearity 30 (2017) 4111–4140.

 

2018

1. Suddhasattwa Das and James A Yorke.
Super convergence of ergodic averages for quasiperiodic orbits

Nonlinearity 31 pp 491-501 (2018)
https://arxiv.org/abs/1506.06810

2. Andrew Cashin and James A Yorke

The Relationship between Anxiety, External Structure, Behavioral History and Becoming Locked into Restricted and Repetitive Behaviors in Autism Spectrum Disorder.

Issues in Mental Health Nursing, 2018
ISSN: 0161-2840 (Print) 1096-4673 (Online) Journal homepage: http://www.tandfonline.com/loi/imhn20

DOI: 10.1080/01612840.2017.1418035

 

3. Yoshitaka Saiki, Miguel Sanjuan, James A Yorke,

Low-dimensional paradigms for high-dimensional hetero-chaos.

Citation: Chaos 28, 103110 (2018); doi: 10.1063/1.5045693

 

4. Yoshitaka Saiki and James A Yorke,

Quasiperiodic orbits in Siegel disks/balls and the Babylonian problem

Regular and Chaotic Dynamics 23 2018 735-750.
Submitted 9/18, accepted for 2018 publication of special issue Moser-90 of
Regular and Chaotic Dynamics

 https://arxiv.org/submit/2462651

Abstract. We investigate numerically complex dynamical systems where a fixed point is surrounded by a disk or ball of quasiperiodic orbits, where there is a change of variables (or conjugacy) that converts the system into a linear map. We compute this ``linearization'' (or conjugacy) from knowledge of a single quasiperiodic trajectory. In our computations of rotation rates and Fourier coefficients of the conjugacy, we only use knowledge of a trajectory and we do not assume knowledge of the explicit form of a dynamical system. This problem is called the Babylonian Problem: determining the characteristics of a quasiperiodic set from a trajectory. Our computations depend on the very high speed of our computational method ``the weighted Birkhoff average'' for the computation of rotation rates and Fourier coefficients.

 

 

2019

1.  QR Takens embedding

Suddhasattwa Das, Yoshitaka Saiki, Evelyn Sander, James A Yorke

Solving the Babylonian Problem of quasiperiodic rotation rates

DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS SERIES S

Volume 12, Number 8, December 2019

doi:10.3934/dcdss.2019145

 

Preprints