Publications

 

 

A. Books:

 

1984    H. W. Hethcote and J. A. Yorke,

            Gonorrhea Transmission Dynamics and Control, Springer-Verlag Lecture Notes in Biomathematics #56, 1984.

1994    E. Ott, T. Sauer and J. A. Yorke,

            Coping with Chaos, 1994 John Wiley & Sons, Inc.

1997    K. Alligood, T. Sauer and J. A. Yorke,

            Chaos: An Introduction to Dynamical Systems, Springer-Verlag, New York (1997). ISBN 0-387-94677-2.

1997    H. E. Nusse and J. A. Yorke,

            Dynamics: Numerical Explorations, Applied Mathematical Sciences 101, Springer-Verlag, New York, Second Edition 1997 (First Edition 1994). Book includes a computer disk with the program "Dynamics".

1997    C. Grebogi and. J. A. Yorke, Editors,

             The Impact of Chaos on Science and Society, United Nations University Press, Tokyo (1997). ISBN 92-808-0882-6.

 

B. Journal Papers

 

1967

 

1. A. Strauss and J. A. Yorke, Perturbation theorems for ordinary differential equations, J. Differential Equations 1 (1967), 15-30.

 

2. J. A. Yorke, Invariance for ordinary differential equations.

Math. Systems Theory 1 (1967), 353‑372.

 

3. A. Strauss and J. A. Yorke, On asymptotically autonomous differential equations. Math. Systems Theory 1 (1967), 175-182.

 

 

1968

 

1. A. Strauss and J. A. Yorke, Perturbing asymptotically stable differential equations, Bull. Amer. Math. Soc. 74 (1968), 992-996. Announcement of #1969-7.

 

2. J. A. Yorke, Extending Lyapunov's second method to non-Lipschitz Lyapunov functions, Bull. Amer. Math. Soc. 74 (1968), 322-325. Announcement of #1970-3.

 

 

1969

 

1. J. A. Yorke, Permutations and two sequences with the same cluster set, Proc. Amer. Math. Soc. 20 (1969), 606.

 

2. Elliot Winston and J. A. Yorke, Linear delay differential equations whose solutions become identically zero, Rev. Roumaine Math. Pures Appl. 14 (1969), 885-887.

 

3. A. Strauss and J. A. Yorke, Identifying perturbations which preserve asymptotic stability, Proc. Amer. Math. Soc. 22 (1969), 513-518.

 

4. N. P. Bhatia, G. P. Szego and J. A. Yorke, A Lyapunov characterization of attractors, Boll. Un. Mat. Ital. 4 (1969), 222-228.

 

5. G. S. Jones and J. A. Yorke, The existence and nonexistence of critical points in bounded flows, J. Differential Equations 6 (1969), 238-247.

 

6. A. Strauss and J. A. Yorke, On the fundamental theory of differential equations, SIAM Rev. 11 (1969), 236-246.

 

7. A. Strauss and J. A. Yorke, Perturbing uniform asymptotically stable non-linear systems, J. Differential Equations 6 (1969), 452-483. Announcement in #1968-1.

 

8. A. Strauss and J. A. Yorke, Perturbing uniformly stable linear systems with and without attraction, SIAM J. Appl. Math. 17 (1969), 725-739.

 

9. J. A. Yorke, Non-continuable solutions of differential-delay equations, Proc. Amer. Math. Soc. 21 (1969), 648-652.

 

10. J. A. Yorke, Periods of periodic solutions and the Lipschitz constant, Proc. Amer. Math. Soc. 22 (1969), 509-512.

 

 

1970

 

1. J. A. Yorke, Asymptotic stability for one-dimensional differential delay-equations, J. Differential Equations 7 (1970), 189-202.

 

2. J. A. Yorke, A continuous differential equation in Hilbert space without existence, Funkcialaj Ekvacioj 13 (1970), 19-21.

 

3. J. A. Yorke, Differential inequalities and non-Lipschitz scalar functions, Math. Systems Theory 4 (1970), 140-153.

 

4. Gerald S. Goodman and J. A. Yorke, Misbehavior of solutions of the differential equation dy/dx = f(x,y) + epsilon, when the right side is discontinuous, Mathematica Scandinavica 27 (1970), 72-76.

 

5. A. Strauss and J. A. Yorke, Linear perturbations of ordinary differential equations , Proc. Amer. Math. Soc. 26 (1970), 255-260.

 

6. J. A. Yorke, A theorem on Lyapunov functions using the second derivative of V, Math. Systems Theory 4 (1970), 40-45.

 

 

1971

 

1. A. Lasota and J. A. Yorke, Oscillatory solutions of a second order ordinary differential Equation, Ann. Polon. Math. 25 (1971), 175-178.

 

2. J. A. Yorke, Another proof of the Lyapunov convexity theorem, SIAM J. Control (1971), 9 351-353.

 

3. S. Saperstone and J. A. Yorke, Controllability of linear oscillatory systems using positive controls, SIAM J. Control 9 (1971), 253-272.

 

4. A. Lasota and J. A. Yorke, Bounds for periodic solutions of differential equations in Banach spaces, J. Differential Equations 10 (1971), 83-91.

 

 

1972

 

1. A. Lasota and J. A. Yorke, Existence of solutions of two-point boundary value problems for nonlinear systems, J. Differential Equations 11 (1972), 509-518.

 

2. J. A. Yorke, The maximum principle and controllability of nonlinear equations, SIAM J. Control 10 (1972), 334-338.

 

3. S. Grossman and J. A. Yorke, Asymptotic behavior and stability criteria for differential delay equations), J. Differential Equations 12 (1972), 236-255.

 

4. S. Bernfeld and J. A. Yorke, The behavior of oscillatory solutions of x"(t)+p(t)g(x(t))=0, SIAM J. Math. Anal. 3 (1972), 654-667.

 

 

1973

 

1. F. W. Wilson, Jr. and J. A. Yorke, Lyapunov functions and isolating blocks, J. Differential Equations 13 (1973), 106-123.

 

2. K. Cooke and J. A. Yorke, Some equations modelling growth processes and gonorrhea epidemics, Math. Biosci. 16 (1973), 75-101.

 

3,4. W. London, M.D. and J. A. Yorke,
Recurrent outbreaks of measles, chicken pox, and mumps:
 I. Seasonal variation in contact rates
, and
II. Systematic differences in contact rates and stochastic effects,
Amer. J. Epidemiology 98 (1973), 453-468 and 469-482.

 

5. A. Lasota and J. A. Yorke, The generic property of existence of solutions of differential equations in Banach space, J. Differential Equations 13 (1973), 1-12.

 

6. A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481-488.

 

7. J. A. Yorke and W. N. Anderson, Predator-prey patterns, Proc. Nat. Acad. Sci. 70 (1973), 2069-2071.

 

 

1974

                                                                                                           

1. S. N. Chow and J. A. Yorke, Lyapunov theory and perturbations of stable and asymptotically stable systems, J. Differential Equations 15 (974), 308-321.

 

2. J. L. Kaplan and J. A. Yorke, Ordinary differential equations which yield periodic solutions of differential delay questions, J. Math. Anal. Appl. 48 (1974), 317-324.

 

3. J. L. Kaplan, A. Lasota and J. A. Yorke, An application of the Wazewski retract method to boundary value problems, Zeszyty Nauk. Uniw. Jagiellon 356 (1974), 7-14.

 

 

1975

 

1. J. L. Kaplan and J. A. Yorke, On the stability of a periodic solution of a differential equation, SIAM J. Math. Anal. 6 (1975), 268-282.

 

2. T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992.

 

 

1976

 

1. J. C. Alexander and J. A. Yorke,

The implicit function theorem and the global methods of cohomology,
J. Functional Anal. 21 (1976), 330-339.

 

2. A. Lajmanovich Gergely and J. A. Yorke,

A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci. 28 (1976), 221-236.

 

3. R. B. Kellogg, T. Y. Li and J. A. Yorke, A constructive proof of the Brouwer fixed point theorem and computational results, SIAM J. Numer. Anal. 13 (1976), 473-383.

 

 

1977

 

1. J. L. Kaplan and J. A. Yorke,
On the nonlinear differential delay equation dx/dt = -f(x(t), x(t-1)),
J. Differential Equations 23 (1977), 293-314.

 

2. J. L. Kaplan and J. A. Yorke, Competitive exclusion and nonequilibrium coexistence, Amer. Naturalist 111 (1977), 1030-1036.

 

3. A. Lasota and J. A. Yorke, On the existence of invariant measures for transformations with strictly turbulent trajectories, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astro. Phys.225 (1977), 233-238.

 

4. J. C. Alexander and J. A. Yorke, Parameterized functions, bifurcation, and vector fields on spheres, Prob. of the Asymptotic Theory of Nonlinear Oscillations Order of the Red Banner, Inst. of Mathematics Kiev 1977, 15-17: Anniversary volume in honor of I. Mitropolsky.

 

 

1978

 

1. T. Y. Li and J. A. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc.235 (1978), 183-192.

 

2. J. C. Alexander and J. A. Yorke, Global bifurcation of periodic orbits, Amer. J. Math. 100 (1978), 263-292.

 

3. S. N. Chow, J. Mallet-Paret and J. A. Yorke,
Finding zeroes of maps: Homotopy methods that are constructive with probability one,

Math. of Comp. 32 (1978), 887-899.

 

4. J. A. Yorke, H. W. Hethcote and A. Nold, Dynamics and control of the transmission of gonorrhea, Sexually Transmitted Diseases 5 (1978), 51-56.

 

5. T. Y. Li and J. A. Yorke, Ergodic maps on [0,1] and nonlinear pseudo-random number generators, Nonlinear Anal. 2 (1978), 473-481.

 

6. S. N. Chow, J. Mallet-Paret and J. A. Yorke, Global Hopf bifurcation from a multiple eigenvalue, Nonlinear Anal. 2 (1978), 753-763.

 

7. J. C. Alexander and J. A. Yorke, Calculating bifurcation invariants as elements in the homotopy of the general linear group, J. Pure Appl. Algebra 13 (1978), 1-8.

 

8. J. C. Alexander and J. A. Yorke, The homotopy continuation method: Numerically implementable topological procedures, Trans. Amer. Math. Soc. 242 (1978), 271-284.

 

9. T. D. Reynolds, W. P. London and J. A. Yorke, Behavioral rhythms in schizophrenia , J. Nervous and Mental Disease 166 (1978), 489-499.

 

 

1979

 

1. J. L. Kaplan, M. Sorg and J. A. Yorke, Solutions of dx/dt = f(x(t), x(t-1)) have limits when f is an order relation, Nonlinear Anal. 3 (1979), 53-58.

 

2. J. L. Kaplan and J. A. Yorke, Nonassociative real algebras and quadratic differential equations, Nonlinear Anal. 3 (1979), 49-51.

 

3. J. A. Yorke, N. Nathanson, G. Pianigiani and J. Martin, Seasonality and the requirements for perpetuation and eradication of viruses in populations, Amer. J. Epidemiology 109 (1979), 103-123.

 

4. G. Pianigiani and J. A. Yorke, Expanding maps on sets which are almost invariant: Decay and chaos, Trans. Amer. Math. Soc. 252 (1979), 351-366.

 

5. J. L. Kaplan and J. A. Yorke, Preturbulence: A regime observed in a fluid flow model of Lorenz, Comm. Math. Phys. 67 (1979), 93-108. This paper is reprinted in Russian in a book edited by Sinai and Kolmogorov on strange attractors.

 

6. J. A. Yorke and E. D. Yorke,
Metastable chaos: The transition to sustained chaotic oscillations in a model of Lorenz,
J. Stat. Phys. 21 (1979), 263-277.

 

C11.  J. L. Kaplan and J. A. Yorke, Chaotic behavior of multidimensional difference equations, in Functional Differential Equations and Approximation of Fixed Points, H. O. Peitgen and H. O. Walther, eds., Springer Lecture Notes in Math # 730 (1979), 204-227. {A meeting proceedings}

 

 

1980

 

1. J. Auslander and J. A. Yorke, Interval maps, factors of maps, and chaos, Tohoku Math. J. 32 (1980), 177-188.

 

C15. T. Y. Li and J. A. Yorke, A simple reliable numerical algorithm for following homotopy paths, in Analysis and Computation of Fixed Points, Academic Press (1980), 73-91: The proceedings of Math. Res. Center conference at the University of Wisconsin, May 1979.

 

 

1981

 

1. A. Lasota and J. A. Yorke, The law of exponential decay for expanding mappings , Rend. Sem. Mat. Univ. Padova 64 (1981), 141-157.

 

2. K. T. Alligood, J. Mallet-Paret and J. A. Yorke, Families of periodic orbits: Local continuability does not imply global continuability,

J. Differential Geom. 16 (1981), 483-492.

 

 

1982

 

1. J. Mallet-Paret and J. A. Yorke, Snakes: Oriented families of periodic orbits, their sources, sinks, and continuation, J. Differential Equations 43 (1982), 419-450.

 

2. H. W. Hethcote, J. A. Yorke and A. Nold, Gonorrhea modelling: A comparison of control methods, Math. Biosci. 58 (1982), 93-109.

 

3. A. Lasota and J. A. Yorke, Exact dynamical systems and the Frobenius-Perron operator. Trans. Amer. Math. Soc. 273 (1982), 375-384.

 

4. T. Y. Li, M. Misiurewicz, G. Pianigiani and J. A. Yorke, Odd chaos, Phys. Lett. 87A (1982), 271-273.

 

5. T. Y. Li, M. Misiurewicz, G. Pianigiani, and J. A. Yorke, No division implies chaos , Trans. Amer. Math. Soc. 273 (1982), 191-199.

 

6. C. Grebogi, E. Ott and J. A. Yorke, Chaotic attractors in crisis, Phys. Rev. Lett. 48 (1982), 1507-1510. Announcement of #1983-3.

 

 

1983

 

1. P. Frederickson, J. L. Kaplan, E. D. Yorke and J. A. Yorke, The Lyapunov dimension of strange attractors, J. Differential Equations 49 (1983), 185-207.

 

2. J. C. Alexander and J. A. Yorke, On the continuability of periodic orbits of parametrized three dimensional differential equations, J. Differential Equations 49 (1983), 171-184.

 

3. C. Grebogi, E. Ott and J. A. Yorke, Crises, sudden changes in chaotic attractors, and transient chaos, Physica 7D (1983), 181-200. Announcement in #1982-6.

 

4. J. D. Farmer, E. Ott and J. A. Yorke, The dimension of chaotic attractors, Physica 7D (1983), 153-180.

 

5. C. Grebogi, E. Ott and J. A. Yorke,
Fractal basin boundaries, long-lived chaotic transients, and unstable-unstable pair bifurcation,
Phys. Rev. Lett. 50 (1983), 935-938, E 51 (1983), 942.

 

6. C. Grebogi, E. Ott and J. A. Yorke,
Are three frequency quasiperiodic orbits to be expected in typical nonlinear dynamical systems?,
Phys. Rev. Lett. 51 (1983), 339-342. Announcement of #1985-4.

 

7. J. A. Yorke and K. T. Alligood,

Cascades of period doubling bifurcations: A prerequisite for horseshoes,

Bull. Amer. Math. Soc. 9 (1983), 319-322. Announcement of #1985-7.

 

8. C. Grebogi, S. W. McDonald, E. Ott and J. A. Yorke,

Final state sensitivity: An obstruction to predictability,

Phys. Letters 99A (1983), 415-418.

 

1984

 

1. J. L. Kaplan, J. Mallet-Paret and J. A. Yorke,
The Lyapunov dimension of a nowhere differentiable attracting torus,

Ergodic Theory and Dyn. Sys. 4 (1984), 261-281.

 

2. B. Curtis Eaves and J. A. Yorke, Equivalence of surface density and average directional density, Math. Operations Res. 9 (1984), 363-375.

 

3. K. T. Alligood and J. A. Yorke,
Families of periodic orbits: Virtual periods and global continuability,
J. Differential Equations 55 (1984), 59-71.

 

4. J. C. Alexander and J. A. Yorke, Fat baker’s transformations,

Ergodic Theory and Dyn. Sys. 4 (1984), 1-23.

 

5. B. R. Hunt and J. A. Yorke,

When all solutions of dx/dt = sumi qi(t)x(t-Ti (t)) oscillate,

J. Differential Equations 53 (1984), 139-145.

 

6. A. Lasota, T. Y. Li and J. A. Yorke,

Asymptotic periodicity of the iterates of Markov operators,

Trans. Amer. Math. Soc. 286 (1984), 751-764.

 

7. C. Grebogi, E. Ott, S. Pelikan and J. A. Yorke,

Strange attractors that are not chaotic,
Physica 13D (1984), 261-268.

 

8. E. Ott, W. D. Withers and J. A. Yorke,

Is the dimension of chaotic attractors invariant under coordinate changes?,
J. Stat. Phys. 36 (1984), 687-697.

 

 

1985

 

4.      T. Y. Li, J. Mallet-Paret and J. A. Yorke,
Regularity results for real analytic homotopies,

Numerische Mathematik 46 (1985), 43-50.

 

2. E. Ott, E. D. Yorke and J. A. Yorke, A scaling law: How an attractor’s volume depends on noise level, Physica 16D (1985), 62-78.

 

3. J. A. Yorke, C. Grebogi, E. Ott and L. Tedeschini-Lalli Scaling behavior of windows in dissipative dynamical systems, Phys. Rev. Lett. 54 (1985), 1095-1098.

 

4. C. Grebogi, E. Ott and J. A. Yorke,
Attractors on an N-torus: Quasiperiodicity versus chaos,
Physica 15D (1985), 354-373. Announcement in #1983-6.

 

5. S. W. McDonald, C. Grebogi, E. Ott and J. A. Yorke, Fractal basin boundaries, in Physica 17D (1985), 125-153.

 

6. S. W. McDonald, C. Grebogi, E. Ott and J. A. Yorke, Structure and crises of fractal basin boundaries, Phys. Lett. 107A (1985), 51-54.

 

7. J. A. Yorke and K. T. Alligood, Period doubling cascades of attractors: A prerequisite for horseshoes, Comm. Math. Phys. 101 (1985), 305-321. Announcement in #1983-7. See also #1987-8.

 

8. C. Grebogi, E. Ott and J. A. Yorke, Super persistent chaotic transients, Ergodic Theory and Dyn. Sys. 5 (1985), 341-372.

 

 

1986

 

1. C. Grebogi, S. W. McDonald, E. Ott and J. A. Yorke, The exterior dimension of fat fractals, Phys. Lett. 110A (1985), 1-4; E 113A (1986), 495. Also, Comment on "Sensitive dependence on parameters in nonlinear dynamics" and on "Fat fractals on the energy surface" (with C. Grebogi and E. Ott), Phys. Rev. Lett 56 (1986), 266.

 

2. C. Grebogi, E. Ott and J. A. Yorke,
Metamorphoses of basin boundaries in nonlinear dynamical systems,
Phys. Rev. Lett. 56 (1986), 1011-1014.

 

3. A. Lasota and J. A. Yorke,
Statistical Periodicity of Deterministic Systems,
Casopis Pro Pestovani Matematiky 111 (1986), 1-13.

 

4. K. T. Alligood and J. A. Yorke, Hopf bifurcation: The appearance of virtual periods in cases of resonance, J. Differential Equations 64 (1986), 375-394.

 

5. L. Tedeschini-Lalli and J. A. Yorke,
How often do simple dynamical processes have infinitely many coexisting sinks?,
Comm. Math. Phys. 106 (1986), 635-657.

 

6. C. Grebogi, E. Ott and J. A. Yorke, Critical exponent of chaotic transients in nonlinear dynamical systems, Phys. Rev. Lett. 57 (1986), 1284-1287.

 

7. J. L. Hudson, O. E. Rossler and J. A. Yorke,

Cloud attractors and time-inverted Julia boundaries,

Z. Naturforsch 41A (1986), 979-980.

 

 

1987

 

1. C. Grebogi, E. Kostelich, E. Ott and J. A. Yorke,

Multi-dimensioned intertwined basin boundaries and the kicked double rotor,
Phys. Letters 118A (1986), 448-454; E 120A (1987), 497.

 

2. E. Kostelich and J. A. Yorke,
Lorenz cross sections of the chaotic attractor of the double rotor,
Physica 24D (1987), 263-278.

 

3. J. A. Yorke, E. D. Yorke, and J. Mallet-Paret,
Lorenz-like chaos in a partial differential equation for a heated fluid loop,
Physica 24D (1987), 279-291.

 

4. T. Y. Li, T. Sauer and J. A. Yorke,
Numerical solution of a class of deficient polynomial systems,
SIAM J. Numer. Anal. 24 (1987), 435-451.

 

5. C. Grebogi, E. Ott and J. A. Yorke,
Basin boundary metamorphoses: Changes in accessible boundary orbits,
Physica 24D (1987), 243-262, and Nucl. Phys. B. (Suppl.) 2 (1987), 281-300.

 

6. C. Grebogi, E. Ott and J. A. Yorke,
Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics,
Science 238 (1987), 632-638.

 

7. C. Grebogi, E. Kostelich, E. Ott and J. A. Yorke,
Multi-dimensioned intertwined basin boundaries: Basin structure of the kicked double rotor,
Physica 25D (1987), 347-360.

 

8. K. T. Alligood, E. D. Yorke and J. A. Yorke,
Why period-doubling cascades occur: Periodic orbit creation followed by stability shedding,
Physica 28D (1987), 197-205.

 

9. C. Grebogi, E. Ott and J. A. Yorke,
Unstable periodic orbits and the dimension of chaotic attractors,
Phys. Rev. A, 36 (1987), 3522-3524.

 

10.  F. Varosi, C. Grebogi and J. A. Yorke,
Simplicial approximation of Poincare maps of differential equations,
Phys. Letters A124 (1987), 59-64.

 

11. S. M. Hammel, J. A. Yorke and C. Grebogi,
Do numerical orbits of chaotic dynamical processes represent true orbits?,
J. of Complexity 3 (1987), 136-145.

 

12. C. Grebogi, E. Ott, J. A. Yorke and H. E. Nusse,
Fractal basin boundaries with unique dimension,
Ann. N.Y. Acad. Sci 497, (1987), 117-126.

 

13. T. Y. Li, T. Sauer and J. A. Yorke,
The random product homotopy and deficient polynomial systems,
Numerische Mathematik 51 (1987), 481-500.

 

14. C. Grebogi, E. Ott, F. Romeiras and J. A. Yorke,
Critical exponents for crisis induced intermittency,
Phys. Rev. A 36 (1987), 5365-5380.

 

 

1988

 

1. C. Grebogi, E. Ott and J. A. Yorke,
Unstable periodic orbits and the dimensions of multifractal chaotic attractors,
Phys. Rev. A 37 (1988), 1711-1724.

 

2. E. M. Coven, I. Kan and J. A. Yorke,
Pseudo-orbit shadowing in the family of tent maps,
Trans. Amer. Math. Soc. 308 (1988), 227-241.

 

3. H. E. Nusse and J. A. Yorke,
Is every approximate trajectory of some process near an exact trajectory of a nearby process?,
Comm. Math. Phys. 114 (1988), 363-379.

 

4. H. E. Nusse and J. A. Yorke,
Period halving for xn+1 = MF(xn) where F has negative Schwarzian derivative,
Phys. Letters A 127 (1988), 328-334.

 

5. E. Kostelich and J. A. Yorke,
Noise reduction in Dynamical Systems
,
Phys. Rev. A. 38 (1988), 1649-1652.

 

6. S. M. Hammel, J. A. Yorke and C. Grebogi,
Numerical orbits of chaotic processes represent true orbits
,
Bull. Amer. Math. Soc. 19 (1988), 465-469.

 

7. P. M. Battelino, C. Grebogi, E. Ott, J. A. Yorke and E. D. Yorke Multiple coexisting attractors, basin boundaries and basic sets, Physica 32 D (1988), 296-305.

 

8. C. Grebogi, E. Ott and J. A. Yorke, Roundoff-induced periodicity and the correlation dimension of chaotic attractors, Phys. Rev. A 38 (1988), 3688-3692.

 

9. T. Y. Li, T. Sauer, J. A. Yorke, Numerically determining solutions of systems of polynomial equations, Bull. Amer. Math. Soc. 18 (1988), 173-177.  

 

 

1989

 

1. I. Kramer, E. D. Yorke and J. A. Yorke, The AIDS epidemic's influence on the gay contact rate from analysis of gonorrhea incidence, Math. Comput. Modelling 12 (1989), 129-137.

 

2. E. Ott, C. Grebogi and J. A. Yorke, Theory of first order phase transitions for chaotic attractors of nonlinear dynamical systems, Phys. Letters A 135 (1989), 343-348.

 

3. E. Ott, T. Sauer and J. A. Yorke, Lyapunov partition functions for the dimensions of chaotic sets, Phys. Rev. Lett. A 39 (1989), 4212-4222.

 

4. T. Y. Li, T. Sauer and J. A. Yorke, The cheater's homotopy: An efficient procedure for solving systems of polynomial equations, SIAM J. Numer. Anal. 26 (1989), 1241-1251. Also announcement: Bull. Amer. Math. Soc. 18 (1988), 173-177: Numerically determining solutions of systems of polynomial equations.

 

5. H. E. Nusse and J. A. Yorke, A procedure for finding numerical trajectories on chaotic saddles, Physica D 36 (1989), 137-156.

 

6. P. M. Battelino, C. Grebogi, E. Ott and J. A. Yorke, Chaotic attractors on a 3-torus and torus break-up, Physica D 39 (1989), 299-314.

 

7. B-S. Park, C. Grebogi, E. Ott and J. A. Yorke, Scaling of fractal basin boundaries near intermittency transitions to chaos, Phys. Rev. A 40 (1989), 1576-1581.

 

8. W. L. Ditto, S. Rauseo, R. Cawley, C. Grebogi, G. H. Hsu, E. Kostelich, E. Ott, H. T. Savage, R. Segnan, M. Spano and J. A. Yorke, Experimental observation of crisis-induced intermittency and its critical exponent, Phys. Rev. Lett. 63 (1989), 923-926.

 

9. E. J. Kostelich and J. A. Yorke, Using dynamic embedding methods to analyze experimental data, Contemp. Math. 99 (1989), 307-312.

 

 

1990

 

1. I. Kramer, E. D. Yorke and J. A. Yorke, Modelling non-monogamous heterosexual transmission of AIDS, Math. Comput. Modelling 13 (1990) 99-107.

 

2. E. Kostelich and J. A. Yorke, Noise reduction: Finding the simplest dynamical system consistent with the data, Physica D 41 (1990), 183-196.

 

3. I. Kan and J. A. Yorke, Antimonotonicity: Concurrent creation and annihilation of periodic orbits, Bull. Amer. Math. Soc. 23 (1990), 469-476. Announcement of #1992-1.

 

4. C. Grebogi, S. M. Hammel, J. A. Yorke and T. Sauer,

Shadowing of physical trajectories in chaotic dynamics: Containment and refinement, Phys. Rev. Lett. 65 (1990), 1527-1530.

 

5. T. Shinbrot, E. Ott, C. Grebogi and J. A. Yorke, Using chaos to direct trajectories to targets, Phys. Rev. Lett. 65 (1990), 3215-3218.

 

6. E. Ott, C. Grebogi and J. A. Yorke, Controlling chaos, Phys. Rev. Lett. 64 (1990), 1196-1199.

 

7. M. Ding, C. Grebogi, E. Ott and J. A. Yorke, Transition to chaotic scattering, Phys. Rev. A, 42 (1990), 7025-7040.

 

8. I. Kramer, J. A. Yorke and E. D. Yorke, The AIDS epidemic's influence on New York City's gay sexual contact rate from an analysis of gonorrhea incidence, Math. Comput. Modelling 13 (l990), 21-25.

  

1991

 

1. M. Ding, C. Grebogi, E. Ott and J. A. Yorke, Massive bifurcation of chaotic scattering, Phys. Letters 153A (1991), 21-26.

 

2. J. A. Kennedy and J. A. Yorke, Basins of Wada, Physica D 51 (l991), 213-225.

 

3. H. E. Nusse and J. A. Yorke, Analysis of a procedure for finding numerical trajectories close to chaotic saddle hyperbolic sets, Ergodic Theory and Dyn. Sys., 11 (1991), 189-208.

 

4. B. Hunt and J. A. Yorke, Smooth dynamics on Weierstrass nowhere differentiable curves, Trans. Amer. Math. Soc., 325 (l991), 141-154.

 

5. T. Sauer and J. A. Yorke, Rigorous verification of trajectories for the computer simulation of dynamical systems, Nonlinearity 4 (1991), 961-979.

 

6. T. Sauer, J. A. Yorke and M. Casdagli, Embedology, J. Stat. Phys., 65 (1991), 579-616.

 

7. Z.-P. You, E. J. Kostelich and J. A. Yorke,
Calculating stable and unstable manifolds,
Int. J. Bifurcation and Chaos 1 (1991), 605-623.

 

8. K. Alligood, L. Tedeschini and J. A. Yorke, Metamorphoses: Sudden jumps in basin boundaries, Comm. Math. Phys., 141 (1991), 1-8.

 

9. H. E. Nusse and J. A. Yorke, A numerical procedure for finding accessible trajectories on basin boundaries, Nonlinearity, 4 (1991), 1183-1212.

 

 

1992

 

1. I. Kan, H. Kocak and J. A. Yorke, Antimonotonicity: Concurrent creation and annihilation of periodic orbits, Annals of Mathematics 136 (1992), 219-252.

 

2. H. E. Nusse and J. A. Yorke,
Border collision bifurcations including period two to period three bifurcation for piecewise smooth systems, Physica D. 57 (1992), 39-57.

 

3. S. P. Dawson, C. Grebogi, J. A. Yorke, I. Kan and H. Kocak, Antimonotonicity: Inevitable reversals of period-doubling cascades, Phys. Letters A 162 (l992), 249-254.

 

4. T. Shinbrot, C. Grebogi, J. Wisdom and J. A. Yorke,

Chaos in a double pendulum, Am. J. Phys., 60 (1992), 491-499.

 

5. T. Shinbrot, E. Ott, C. Grebogi and J. A. Yorke, Using chaos to direct orbits to targets in systems describable by a one-dimensional map,

Phys. Rev. A., 45 (l992), 4165-4168.

 

6. T. Shinbrot, C. Grebogi, E. Ott and J. A. Yorke,
Using chaos to target stationary states of flows,
Phys. Letters A 169, (1992), 349-354.

 

7. T. Shinbrot, W. Ditto, C. Grebogi, E. Ott, M. Spano and J. A. Yorke,
Using the sensitive dependence of chaos (the Butterfly Effect) to direct orbits to targets in an experimental chaotic system, Phys. Rev. Lett. 68 (1992), 2863-2866.

 

8. H. E. Nusse and J. A. Yorke, The equality of fractal dimension and uncertainty dimension for certain dynamical systems,
Comm. Math. Phys. 150 (1992), 1-21.

 

9. K. T. Alligood and J. A. Yorke, Accessible saddles on fractal basin boundaries, Ergodic Theory and Dyn. Sys. 12 (1992), 377-400.

 

10. D. Auerbach, C. Grebogi, E. Ott and J. A. Yorke, Controlling chaos in high dimensional systems, Phys. Rev. Lett. 69 (1992), 3479-3482.

 

11. J. A. Alexander, J. A. Yorke, Z-P. You and I. Kan, Riddled Basins, Int. J. Bifurcation & Chaos 2 (1992), 795-813.

 

12. B. Hunt, T. Sauer and J. A. Yorke,
Prevalence: a translation-invariant "almost every" on infinite dimensional spaces, Bull. Amer. Math. Soc. 27 (1992), 217-238.

 

Addendum: Bull. Amer. Math. Soc. 28 (1993), 306-307.

 

 

1993

 

1. E. J. Kostelich, C. Grebogi, E. Ott and J. A. Yorke, Higher dimensional targeting, Phys. Rev. E 47 (1993) 305-310.

 

2. T. Shinbrot, C. Grebogi, E. Ott and J. A. Yorke, Using small perturbations to control chaos, Nature, 363 (1993), pp. 411-417.

 

3. M. Ding, C. Grebogi, E. Ott, T. Sauer and J. A. Yorke,
Plateau onset for correlation dimension: When does it occur?, Phys. Rev. Lett. 70 (1993), pp. 3872-3873.

 

4. B. R. Hunt and J. A. Yorke,

Maxwell on Chaos, Nonlinear Science Today 3 (1993), pp. 2-4.

 

5. J.A.C. Gallas, C. Grebogi and J. A. Yorke, Vertices in Parameter Space: Double Crises Which Destroy Chaotic Attractors,

Phys. Rev. Lett 71 (1993), pp. 1359-1362.

 

6. T. Sauer and J. A. Yorke, How many delay coordinates do you need?,

Int. J. of Bifurcation and Chaos, 3 (1993) 737-744.

 

7. Y-C. Lai, C. Grebogi, J. A. Yorke and I. Kan, How often are chaotic saddles nonhyperbolic?, Nonlinearity, 6 (1993), 779-797.

 

8. M. Ding, C. Grebogi, E. Ott, T. Sauer and J. A. Yorke,
Estimating correlation dimension from a time series: when does plateau onset occur?,

Physica D, 69 (1993), 404-424.

 

9. E. Ott, J. C. Sommerer, J. Alexander, I. Kan and J. A. Yorke,
Scaling behavior of chaotic systems with riddled basins,
Phys. Rev. Lett., 71 (1993), 4134-4137.

 

10. S. P. Dawson, C. Grebogi, H. Kocak and J. A. Yorke, A geometric mechanism for antimonotonicity in scalar maps with two critical points, Phys. Rev. E 48 (1993), 1676-1682.

 

11. B. R. Hunt, I. Kan and J. A. Yorke,
When Cantor sets intersect thickly,
Trans. Amer. Math. Soc., 339 (1993), Number 2, 869-888.

 

 

1994

 

1. A. Lasota and J. A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random & Computational Dynamics, 2 (1) (1994), 41-77.

 

2. J. A. Kennedy and J. A. Yorke, Pseudocircles in Dynamical systems, Trans. Amer. Math. Soc. (1994), 343, 349-366.

 

3. H. E. Nusse, E. Ott and J. A. Yorke,
Border-Collision Bifurcations: an explanation for observed bifurcation phenomena,
Phys. Rev. E, 49 (1994), 1073-1076.

 

4. E. Ott, J. Alexander, I. Kan, J. Sommerer and J. A. Yorke,
Transition to chaotic attractors with riddled basins,
Physica D., 76 (1994), pp. 384-410.

 

5. S. P. Dawson, C. Grebogi, T. Sauer and J. A. Yorke,

Obstructions to shadowing when a Lyapunov exponent fluctuates about zero, Phys. Rev. Lett., 73, (1994), pp. 1927-1930.

 

 

1995

 

1. E. Barreto, E. J. Kostelich, C. Grebogi, E. Ott and J. A. Yorke, Efficient switching between controlled unstable periodic orbit in higher dimensional chaotic systems, Phys. Rev. E, 51 (1995), #5, pp. 4169-4172.

 

2. A. Pentek, Z. Torozakai, and T. Tel, C. Grebogi and J. A. Yorke, Fractal boundaries in open hydrodynamical flows: signatures of chaotic saddles, Phys. Rev. E., 51 (1995), #5, pp. 4076-4088.

 

3. H. E. Nusse and J. A. Yorke,

Border-collision bifurcations for piecewise smooth one-dimensional maps,

Int. J. Bifurcation and Chaos, 5 (1995), No. 1, pp. 189-207.

 

4. I. Kan, H. Kocak and J. A. Yorke, Persistent Homoclinic Tangencies in the Henon Family, Physica D, 83 (1995), pp. 313-325.

 

5. J. A. Kennedy and J. A. Yorke, Bizarre Topology is Natural in Dynamical Systems, Bull. Amer. Math. Soc., 32, #3 (1995), pp. 309-316.

 

6. H. E. Nusse, E. Ott and J. A. Yorke, Saddle-node bifurcations on fractal basin boundaries, Phys. Rev. Lett., 75 (1995). 2482-2485.

 

7. H. B. Stewart, Y. Ueda, C. Grebogi and J. A. Yorke, Double crises in two parameter dynamical systems, Phys. Rev. Lett., 75 (1995). 2478-2481.

 

8. L. Salvino, R. Cawley, C. Grebogi and J. A. Yorke, Predictability in time series, Phys. Letters A, 209 (1995), pp. 327-332.

 

9. C. S. Daw, C.E.A. Finney, M. Vasudevan, N. A. van Goor, K. Nguyen, D. C. Bruns, E. J. Kostelich, C. Grebogi, E. Ott and J. A. Yorke,
Self organization and chaos in a fluidized bed,
Phys. Rev. Lett. (1995), 75, #12, pp. 2308-2311.

 

 

1996

 

1. H. E. Nusse and J. A. Yorke,
Wada basin boundaries and basin cells, Physica D, 90 (1996), pp. 242-261.

 

2. H. E. Nusse and J. A. Yorke,
Basins of attraction, Science (1996), 271, pp. 1376-1380.

 

3. A. Lasota and J. A. Yorke,
When the long-time behavior is independent of the initial density,
SIAM J. of Math. Anal., (1996), 27, #1, pp. 221-240.

 

4. Y. Lai, C. Grebogi, J. A. Yorke and S. Venkataramani,

Riddling bifurcations in chaotic dynamical systems,
Phys. Rev. Lett., 77 (1996), pp. 55-58.

 

5. U. Feudel, C. Grebogi, B. Hunt and J. A. Yorke, A map with more than 100 coexisting low-period, periodic attractors,
Phys. Rev. E. (1996) 54, pp. 71-81.

 

6. E. Kostelich, J. A. Yorke and Z. You,
Plotting stable manifolds: error estimates and noninvertible maps,
Physica D 93 (1996), pp. 210-222.

 

7. B. Peratt and J. A. Yorke, Continuous avalanche mixing of granular solids in a rotating drum, Europhys. Lett. (1996), 35, pp. 31-35.

 

8. B. Hunt, E. Ott and J. A. Yorke, Fractal dimensions of chaotic saddles of dynamical systems, Phys. Rev. E., (1996), 54, pp. 4819-4823.

 

9. J. A. Kennedy and J. A. Yorke,
Pseudocircles, diffeomorphisms, and perturbable dynamical systems, Ergodic Theory and Dyn. Sys. (1996), 16, pp. 1031-1057.

 

10. D. Auerbach and J. A. Yorke,
Controlling chaotic fluctuations in semiconductor laser arrays,
J. Optical Soc. Amer. B (1996), 13, #10, pp. 2178-2187.

 

11. B. Hunt, K. M. Khanin, Y. G. Sinai and J. A. Yorke,
Fractal properties of critical invariant curves,
J. Stat. Phys. (1996), 85, pp. 261-276.

 

12. J. C. Alexander, B. Hunt, I. Kan and J. A. Yorke,
Intermingled basins for the triangle map,
Ergodic Theory and Dyn. Sys. (1996), 16, pp. 651-662.

 

 

1997

 

1. M. Sanjuan, J. A. Kennedy, C. Grebogi and J. A. Yorke, Indecomposable continua in dynamical systems with noise: fluid flow past an array of cylinders,
Int. J. Bifurcation & Chaos (1997) 7(1), pp. 125-138.

 

2. B. Hunt, E. Ott and J. A. Yorke,

Differentiable generalized synchronism of chaos,
Phys. Rev. Lett. E. (1997), 55, # 4, pp. 4029-4034.

 

3. H. E. Nusse and J. A. Yorke,
The structure of basins of attraction and their trapping regions,
Ergodic Theory and Dyn. Sys., (1997), 17, pp. 463-482.

 

4. E. Barreto, B. Hunt, C. Grebogi, and J. A. Yorke,
From high dimensional chaos to stable periodic orbits,
Phys. Rev. Lett., (1997), 78, #24, pp. 4561-4564.

 

5. W. Chin, B. Hunt and J. A. Yorke,
Correlation dimension for iterated function systems,
Trans. Amer. Math. Soc. (1997), Vol 349, Number 5, 1783-1796.

 

6. Z. Toroczkai, G. Karolyi, A. Pentek, T. Tel, C. Grebogi and J. A. Yorke, Wada dye boundaries in open hydrodynamical flows,
Physica A., (1997), 239, pp. 235-243.

 

7. T. Sauer, C. Grebogi, and J. A. Yorke,
How long do numerical chaotic solutions remain valid?,
Phys. Rev. Lett., (1997), 79, #1, pp. 59-62.

 

8. J. A. Kennedy and J. A. Yorke, The topology of stirred fluids,
Topology and Its Applications, (1997), 80, pp. 201-238.

 

9. T. Sauer and J. A. Yorke, Are the dimensions of a set and its image equal under typical smooth functions?,

Ergodic Theory and Dyn. Sys., (1997), 17, pp. 941-956.

 

10. M. Sanjuan, J. A. Kennedy, E. Ott and J. A. Yorke, Indecomposable continua and the characterization of strange sets in nonlinear dynamics, Phys. Rev. Lett., (1997), 78, pp. 1892-1895.

 

11. J. Jacobs, E. Ott, T. Antonsen, and J. A. Yorke,

Modelling fractal entrainment sets of tracers advected by chaotic temporarily irregular fluid flows using random maps,
Physica D110, (1997), 1-17.

 

12. E. Kostelich, I. Kan, C. Grebogi, E. Ott And J. A. Yorke,

Unstable dimension variability: a source of nonhyperbolicity in chaotic systems, Physica D 109 (1997), 81-90.

 

 

1998

 

1. C. Schroer, T. Sauer, E. Ott and J. A. Yorke, Predicting chaos most of the time from embeddings with self-intersections, Phys. Rev. Lett. (1998), 80, 1410-1413.

 

2. U. Feudel, C. Grebogi, L. Poon and J. A. Yorke, Dynamical properties of a simple mechanical system with a large number of coexisting periodic attractors,
Chaos, Solutions and Fractals, (1998),  9, 171-180.

 

3. S. Banerjee, J. A. Yorke and C. Grebogi,
Robust chaos,

Phys. Rev. Lett. (1998), 80, pp. 3049-3052.

 

4. C. Robert, K. T. Alligood, E. Ott and J. A. Yorke,
Outer tangency bifurcations of chaotic sets,
Phys. Rev. Lett. (1998), 80, pp. 4867-4870.

 

5. G.-H. Yuan, S. Banerjee, E. Ott and J. A. Yorke,
Border-collision bifurcations in the Buck Converter, IEEE Trans. Circuits and Systems-I: Fund. The. and Appl. (1998),  45, #7, pp. 707-716..

 

6. C. Schroer, E. Ott and J. A. Yorke,
The effect of noise on nonhyperbolic chaotic attractors,
Phys. Rev. Lett. (1998), 81. #7. Pp. 1397-1400.

 

7. B. Peratt and J. A. Yorke,
Modelling continuous mixing of granular solids in a rotating drum,
Physica D 118, (1998), pp. 293-310.

 

8. K. Alligood and J. A. Yorke, Rotation intervals for chaotic sets,
Proc. Amer. Math. Soc., (1998), 126, #9, pp. 2805-2810.

 

9. T. Sauer, J. Tempkin and J. A. Yorke,
Spurious Lyapunov exponents in attractor reconstruction,
Phys. Rev. Lett., (1998), 81, #20, pp.4341-4344.

 

10.  J. A. Kennedy and J. A. Yorke,
Dynamical system topology preserved in the presence of noise,
Turkish J. Math, 22 (1998), p. 379.

 

 

1999

 

1. B. Hunt, J. Gallas, C. Grebogi, J. A. Yorke and H. Kocak,
Bifurcation rigidity, Physica D 129, (1999), pp. 35-56.

 

2. J. A. Kennedy, M.A.F. Sanjuan, J.A. Yorke, and C. Grebogi,
The Topology of Fluid Flow Past a Sequence of Cylinders,
Topology and Its Applications, 94, (1999), pp. 207-242.

 

3. D. Sweet, E. Ott and J.A. Yorke, Topology in chaotic scattering,
Nature 399 (May 27, 1999), #6734, pp. 315-316.

 

4. T. Sauer and J.A. Yorke,
Reconstructing the Jacobian from data with observational noise,
Phys. Rev. Lett., 83 (1999), #7, pp. 1331-1334.

 

5. M. Dutta, H.E. Nusse, E. Ott, J.A. Yorke and G.-C. Yuan,
Multiple attractor bifurcations: a source of unpredictability in piecewise smooth systems,
Phys. Rev. Lett., 83 (1999), #21, pp. 4281-4284.

 

6. G.-C. Yuan and J. A. Yorke,
An open set of maps for which every point is absolutely nonshadowable,
Proc. Amer. Math. Soc., 128 (1999), #3, pp. 909-918.

 

 

2000

 

1. J. R. Miller and J.A. Yorke,
Finding all periodic orbits of maps using Newton methods: Sizes of basins, PhysicaD 135 (2000), pp. 195-211.

 

2. G.-C. Yuan and J.A. Yorke,
Collapsing of chaos in one-dimensional maps,
PhysicaD 136 (2000), pp. 18-30.

 

3. H. E. Nusse and J. A. Yorke,
Fractal Basin Boundaries Generated by Basin Cells and the Geometry of Mixing Chaotic Flows,
Phys. Rev. Lett., 84 (2000)#4, pp. 626-629.

 

4.  S. Banerjee, M.S. Karthik, G.-H. Yuan and J.A. Yorke,
Bifurcations in On-Dimensional Piecewise Smooth Maps Theory and Applications in Switching Circuits,
IEEE Transactions on Circuits and Systems-I,
47, #3 (2000) pp. 389-394.

 

5.  C. Robert, K. Alligood, E. Ott and J.A. Yorke,
Explosions of Chaotic Sets,
Physica D,
144 (2000), pp. 44-61.

 

6.  Y.Z. Xu, Q. Ouyang, J.G. Wu, J.A. Yorke, G.X. Xu, D.F. Xu, R.D. Soloway and J.Q. Ren,
Using Fractal to Solve the Multiple Minima Problem in Molecular Mechanics Calculation,
Journal of Computational Chemistry, 21, #12 (2000), pp. 1101-1108.

 

7.  S. Guharay, B.R. Hunt, J.A. Yorke, and O.R. White,
Correlations in DNA sequences across the three domains of life,
Physica D 146 (2000), pp. 388-396.

 

8.  G.-C. Yuan, J.A. Yorke, T.L. Caroll, E. Ott, L.M. Pecora,
Testing whether two chaotic one dimensional processes are dynamically identical,
Phys. Rev. Lett. 85, (2000), #20 pp. 4265-4268.

 

 

2001

 

1.  J. A. Kennedy and J.A. Yorke,
Topological horseshoes,
Trans. Amer. Math. Soc. 353, (2001), #6, pp. 2513-2530.

 

2.  D.J. Patil, B.R. Hunt, E. Kalnay, J.A. Yorke, and E. Ott,
Local Low Dimensionality of Atmospheric Dynamics,
Phys. Rev. Lett. 86, (2001), #26, pp. 5878-5881.

 

3.  J. A. Kennedy, S. Kocak and J.A. Yorke,
The chaos lemma,
The Amer. Math. Monthly,
108 (2001), #5, pp. 411-423.

 

4.  D. Sweet, H.E. Nusse and J.A. Yorke,
Stagger and step method:  detecting and computing chaotic saddles in higher dimensions,
Phys. Rev. Lett. 86, (2001), #11, PP. 2261-2264.

 

 

2002

 

1.  C. Grebogi, L. Poon, T. Sauer, J.A. Yorke and D. Auerbach,
Shadowability of chaotic dynamical systems,
Handbook of Dyn. Systems,
2, Ch. 7, pp. 313-344.

 

2. J. A. Tempkin and J. A. Yorke,
Measurements of a Physical Process Satisfy a Difference Equation,
J. Difference Eq. & Appl., 8 (2002), p. 13.

 

3.  K. Alligood, E. Sander, and J. Yorke,
Explosions: global bifurcations at heteroclinic tangencies,
Ergodic Theory and Dynamical Systems, Volume 22, Issue 4, Pages 953-972, 2002.

 

Proceedings:

I. Szunyogh, A.V. Zimin, D.J. Patil, B.R. Hunt, E. Kalnay, E. Ott, and J.A. Yorke,
On the Dynamical Basis of Targeting Weather Observations,
Proceedings on Symposium on Observations,
Data Assimilation, and Probabilistic Prediction, Amer. Met. Soc. Jan. 13-17, 2002 Orlando Fl.

 

2003

 

1. William Ott and James A. Yorke,
Learning About Reality From Observation,
SIAM Journal on Applied Dynamical Systems, 297-322, 2, 2003.

 

2. M. Corazza, E. Kalnay, D.J. Patil, S.-C. Yang, R. Morss, M. Cai, I. Szunyogh, B.R. Hunt, and J.A. Yorke,

Use of the Breeding Technique to Estimate the Structure of Analysis "Errors of  the Day",
Nonlinear Processes in Geophysics,
Nonlinear Processes in Geophysics, 10, pp. 233-243, 2003.

 

3. H. E. Nusse and J. A. Yorke,
Characterizing the basins with the most entangled boundaries,
Ergodic Theory and Dyn. Sys., 23 (2003). 895-906.

 

4. J.A. Kennedy and J.A. Yorke,
Generalized Hénon difference equations with delay,
Universitatis Iagellonicae Acta Mathematica, XLI (2003), 9-28.

 

2004

 

1. BR Hunt, E. Kalnay, E.J. Kostelich, E. Ott, DJ Patil, T. Sauer, I. Szunyogh, JA Yorke, and A.V. Zimin,

Four-Dimensional Ensemble Kalman Filtering, Tellus 56A, (2004), 273-277.

 

2. M. Brin, W. Ott, and J. A. Yorke, Enveloping manifolds, Topology and its Applications, 145 (2004), 233-239

 

3. E. Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza, E. Kalnay, D. J. Patil, J. A. Yorke,

A local ensemble Kalman Filter for atmospheric data assimilation.
Tellus 56A (2004), 415-428.


4. Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza, E. Kalnay, D. J. Patil, and J. A. Yorke,

Estimating the state of large spatio-temporally chaotic systems,
Phys. Lett. A., 330, (2004) 365-370.

 

5. Michael Roberts, Brian R. Hunt, James A. Yorke, Randall Bolanos, and Art Delcher,

A Preprocessor for Shotgun Assembly of Large Genomes,
J Comput Biol. 2004;11(4),734-52

 

6. Michael Roberts, Wayne Hayes, Brian R. Hunt, Stephen M. Mount, James A. Yorke,
Reducing storage requirements for biological sequence comparison  [Minimizers], Bioinformatics, Dec 2004; 20: 3363 - 3369.

 

7. I. Frommer, E. Harder, B. Hunt, R. Lance, E. Ott and J. Yorke,
Modeling Congested Internet Connections, Proceedings of the IASTED International Conference on Communications and Computer Networks (Nov 2004), Cambridge, MA, 2004, 319-324. (This conference referees papers before they are accepted for presentation.)


Proceedings:

T. Sauer, J.A. Yorke, A.V. Zimin, E. Ott, E.J. Kostelich, I. Szunyogh, G. Gyarmati, E. Kalnay, D.J. Patil,

4D Ensemble Kalman Filtering for Assimilation of Asynchronous Observations, Submitted to AMS Proceedings 2004 (a proceedings published on disk so no page numbers exist).

 

Proceedings:

I. Szunyogh, E.J. Kostelich, G. Gyarmati, B.R. Hunt, E. Ott, A.V. Zimin, E. Kalnay, D.J. Patil, and J.A .Yorke,

A Local Ensemble Kalman Filter for the NCEP GFS Model, Amer. Met. Soc. Proceedings 2004 (a proceedings published on disk so no page numbers exist).

 

 

2005

 

1. I. Szunyogh, E. J. Kostelich, G. Gyarmati, D. J. Patil, B. R. Hunt, E. Kalnay, E. Ott, and J. A. Yorke,

Assessing a local ensemble Kalman filter: Perfect model experiments with the NCEP global model,
Tellus 57A (2005) pp 528-545.


2. Brandy L. Rapatski, Frederick Suppe, and James A. Yorke,
HIV Epidemics Driven by Late Disease-Stage Transmission,
JAIDS, Journal of Acquired Immune Deficiency Syndromes, 38, 2005, 241-253.

 

3. John Harlim, Mike Oczkowski, James A. Yorke, Eugenia Kalnay, and Brian R. Hunt,
Convex Error Growth Patterns in a Global Weather Model,
Phys. Rev. Lett. 94 (2005), 228501:1-4.

 

4. William Ott and J. A. Yorke,
Prevalence, Bull. Amer. Math. Soc. 42 (2005), 263-290.

 

5. Steven L. Salzberg and James A. Yorke,
Beware of mis-assembled genomes,
Letter to the editor, (2005) V 21 (no. 24): 4320-4321 Bioinformatics.

 

6. R. Lance, I. Frommer, B. R. Hunt, E. Ott, J. A. Yorke, E. Harder,
Round-trip time inference via passive monitoring,
Proc. of the Workshop on Large Scale Network Inference (LSNI):
Methods, Validation, and Applications, ACM SIGMETRICS (June 2005, Banff, Alberta, Canada).

 

7. J. Yorke, Chaos, New Scientist, 187 (Sept. 17, 2005), p. 37 (very short paper)

 

 

2006

 

1. Brandy L. Rapatski, Frederick Suppe, and James A. Yorke,
Reconciling different infectivity estimates for HIV-1,
JAIDS, Journal of Acquired Immune Deficiency Syndromes, Volume 43(3) 1 November 2006 pp 253-256.

 

2. C.M. Danforth, J.A. Yorke,
Making Forecasts for Chaotic Physical Processes,
Phys. Rev. Lett., 96, 144102 (2006).

 

 

3. Joseph D. Skufca, James A. Yorke, and Bruno Eckhardt,
The edge of chaos in a parallel shear flow,
Phys. Rev. Lett. 96 May 5, 2006, 1741-4.

 

4. K.T. Alligood, E. Sander, and J.A. Yorke,
Three-dimensional crisis: Crossing bifurcations and unstable dimension variability,
Phys. Rev. Lett. 96 (2006), 244103.

 

2007

 

1. K.T. Alligood, E. Sander, J.A. Yorke,

Explosions in dimensions one through three,
Rend. Sem. Mat. Univ. Pol. Torino - 65, 1 (2007), pp 1-15. This special issue was entitled “Subalpine Rhapsody in Dynamics”

 

2. Tobias M. Schneider, James A. Yorke, and Bruno Eckhardt,

Turbulence Transition and the Edge of Chaos in Pipe Flow,
Phys. Rev. Lett. 99, 034502 (2007).

 

3. Aleksey V Zimin, Douglas R. Smith, Granger Sutton, James A. Yorke,

Assembly Reconciliation, Bioinformatics 24 (2007) 42-45.

Bioinformatics 2008 24(1):42-45; doi:10.1093/bioinformatics/btm542

published online Dec 2007.

 

4. Joshua A. Tempkin & J. A. Yorke, Spurious Lyapunov Exponents Computed from Data,

SIAM J. Appl. Dyn. Syst. (SIADS) 6, 457-474 (2007)

 

5. J. Kennedy and J.A. Yorke, Shadowing in Higher Dimensions, Differential Equations, Chaos and Variational Problems, V. Staicu (Ed.), Birkhäuser, pp. 241-246, 2008.

 

6.   Drosophila 12 Genome Consortium, 450 authors including A. Zimin and J.A. Yorke,

Evolution of genes and genomes on the Drosophila phylogeny,

Nature 203-218, Vol 450, 8 Nov 2007.

 

7. Helena E. Nusse and J. A. Yorke, Bifurcations of attraction from the view point of prime ends,

Topology and its Applications Volume 154, Issue 13, 1 July 2007, Pages 2567-2579,

The Proceedings of the US–Polish International Workshop on Geometric Methods in Dynamical Systems

 

8. J. Kennedy, D.R. Stockman, J.A. Yorke,

Inverse limits and an implicitly defined difference equation from economics,

Topology and its applications, 154 (2007), 2533-2553.

9. David D. Kuhl, Istvan Szunyogh, Eric J. Kostelich, D. J. Patil, Gyorgyi Gyarmati, Michael Oczkowski, Brian R. Hunt, Eugenia Kalnay, Edward Ott, and James A. Yorke,

Assessing Predictability with a Local Ensemble Kalman Filter,
Journal of the Atmospheric Sciences, 64 (2007), No. 4, pages 1116–1140.

 

Proceedings.

Szunyogh, I., E. A.  Satterfield, J. A. Aravequia, E. J. Fertig, G. Gyarmati, E. Kalnay, B. R. Hunt, E. J. Kostelich, D. D. Kuhl, E. Ott,  and J. A. Yorke, 

The Local Ensemble Transform Kalman Filter and its implementation on the NCEP global model at the University of Maryland.

Workshop Proceedings, Flow Dependent Aspects of Data Assimilation, June 11-13, 2007, 47-63.

 

 

 

2008

 

1. I. Szunyogh, E.J. Kostelich, G. Gyarmati, E. Kalnay, B. R. Hunt, E. Ott, E. Satterfield, J.A. Yorke,

A local ensemble transform Kalman filter data assimilation system for the NCEP global model, Tellus (2008), 60A, 113–130.

 

2. Michael Roberts, Aleksey V. Zimin, Wayne Hayes, Brian R. Hunt, Cevat Ustun, James R. White, Paul Havlak, and James Yorke,

Improving Phrap-based Assembly of the Rat Using “Reliable” Overlaps,

PLoS ONE. 2008; 3(3): article number e1836.

Published online 2008 March 19. doi: 10.1371/journal.pone.0001836

 

3. Samuel Zambrano, Miguel A. F. Sanju´an, James A. Yorke, Partial control of chaotic systems, a Rapid Communication in Physical Review E, Phys. Rev. E 77, 055201 (2008).

 

4. William Ott and James A. Yorke, When Lyapunov exponents fail to exist, PRE,

Phys. Rev. E 78, 056203 (2008) [6 pages]

 

5. Suzanne S. Sindi, Brian R. Hunt, and James A. Yorke,

Duplication Count Distributions in DNA Sequences,

Phys. Rev. E, 78, No.6, 061912, [11 pages]

 

6. J. A. Kennedy, D. R. Stockman, J. A. Yorke, Inverse Limits and Models with Ill-Defined Forward Dynamics, J. Math. Economics, 44(2008), 423-444.

 

7. James R. White; M. Roberts; J A Yorke, M. Pop,

Figaro: a novel statistical method for vector sequence removal,
Bioinformatics 24 (2008) 462-467.

 

8. Szunyogh, I, E. J. Kostelich, G. Gyarmati, E. Kalnay, B. R. Hunt, E. Ott, Elizabeth Satterfield, and J. A. Yorke,
A local ensemble transform Kalman filter data assimilation system for the NCEP global model, Tellus Series A – Dynamic Met. and Oceanography, 60 (2008) 113-130.

 

9. A. Deniz, J. Kennedy, S. Kocak, A. V. Ratiu, C. Ustun, J. Yorke,

Chaotic n-dimensional Euclidean and Hyperbolic Open Billiards and Chaotic Spinning Planar Billiards, SIAM J. Applied Dynamical Systems (SIADS), 7 (2008), 421-436.

 

2009

 

1. Russell D. Halper, Eric J. Harder, Brian R. Hunt, James A. Yorke,

Stability of TCP Dynamics in Large Data Networks, SIADS = SIAM Journal on Applied Dynamical Systems, (SIADS) 8 (2009) 146-159.

 

2. Aleksey V. Zimin,  Arthur L. Delcher, Liliana Florea, David A. Kelley, Finian Hanrahan, Guillaume Marcais, Geo Pertea, Daniela Puiu, Michael Roberts, Michael C. Schatz, Poorani Subramanian, Curt Van Tassell, James A. Yorke, and Steven L. Salzberg,

A whole-genome assembly of the domestic cow, Bos taurus,

Genome Biology 2009, 10:R42.

 

3. E. Sander & J.A. Yorke, A classification of explosions in dimension one.

Ergodic Theory and Dynamical Systems, 29 (2009), 715-731.

4. Brandy Rapatski & James Yorke, Modeling HIV outbreaks: The male to female prevalence ratio in the core population, Mathematical Biosciences and Engineering, MBE 6 (2009), 135-143. 

 

5. Ian Frommer, Eric Harder, Brian Hunt, Ryan Lance, Edward Ott, James Yorke,

Bifurcation and chaos in a periodically probed computer network,

International Journal of Bifurcation and Chaos, 19, No. 9 (2009) 3129–3141

 

6. Evelyn Sander and James A. Yorke,

Period-doubling cascades for large perturbations of Henon families,

Journal of Fixed Point Theory and Applications, 6(1): 153-163, 2009, DOI: 10.1007/s11784-009-0116-7

 

 

2010

 

1. Turkey paper:

Multi-platform Next Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis,

PLoS Biology. Published Sept 7 2010

Authors: Rami Dalloul, Julie Long, Aleksey Zimin, …, Geo Pertea,…, Daniela Puiu, …, Steven Salzberg, Michael Schatz, …, Curtis Van Tassell, …, James Yorke, …, and Kent Reed;

 

2. Madhura R. Joglekar, Evelyn Sander, and James A. Yorke,

Fixed points indices and period-doubling cascades.

Journal of Fixed Point Theory and Applications, 8 (2010) 151-176, DOI 10.1007/s11784-010-0029-5,

 

2011

 

1. Argentine Ant paper

A Draft Genome of the Globally Widespread and Invasive Argentine ant (Linepithema humile),
Proceedings of the National Academy (PNAS) advance pub,
doi:10.1073/pnas.1007901108, January 31, 2011

Volume: 108  Pages: 5673-5678   Published: APR 5 2011

Authors:Christopher Smith, followed by 48 names in alphabetical order incl.
James Yorke, Aleksey Zimin, and then Neil Tsutsui (UC Berkeley)

 

2. Evelyn Sander and James A. Yorke,
Period-doubling cascades galore, 
Ergodic Theory and Dynamical Systems, 31 (2011), 1249-1267


3. Steven L. Salzberg, Adam M. Phillippy, Aleksey Zimin, Daniela Puiu, Tanja Magoc, Sergey Koren, Todd Treangen, Michael C. Schatz, Arthur L. Delcher, Michael Roberts, Guillaume Marçais, Mihai Pop, and James A. Yorke 

GAGE: a critical evaluation of genome assemblies and assembly algorithms, Genome Research.


2012

 

1. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species,
Nature doi:10.1038/nature11041, Published online 16 May 2012
Butterfly mimicry
Species: Postman butterfly, Heliconius melpomene
Genome size: 295 million base pairs

Authors: The Heliconius Genome Consortium:  Kanchon K. Dasmahapatra, James R. Walters, Adriana D. Briscoe, …, Aleksey V. Zimin, …, Steven L. Salzberg, …, James A. Yorke, …,Stephen Richards, James Mallet, W. Owen McMillan & Chris D. Jiggins

 

2. Evelyn Sander and James A. Yorke,

Connecting period-doubling cascades to chaos,

the International Journal of Bifurcation and Chaos (IJBC), 22 Feb 2012..

DOI No: 10.1142/S0218127412500228    Article Number: 1250022   

 

3.  Aleksey V. Zimin, David R. Kelley, Michael Roberts, Neza Vodopivec, Steven L. Salzberg,  JA Yorke

Mis-assembled “Segmental duplications” in two versions of the Bos taurus genome

PLoS ONE 7(8): e42680. doi:10.1371/journal.pone.0042680

 

4. Juan Sabuco, Samuel Zambrano, Miguel A.F. Sanjuán, James A. Yorke.
Finding safety in partially controllable chaotic systems

Communications in Nonlinear Science and Numerical Simulation, Volume 17, Issue 11, November 2012, Pages 4274–4280.

 

5. Juan Sabuco, Miguel A. F. Sanjuan, and James A. Yorke, Dynamics of Partial Control. Chaos 22, 047507 (2012). published online 14 December 2012.  http://dx.doi.org/10.1063/1.4754874 (9 pages).

 

 

2013

 

1. Aleksey Zimin, Guillaume Marçais, Daniela Puiu, Michael Roberts, Steven L. Salzberg, and J. A. Yorke.
The MaSuRCA Genome Assembler, Oxford Bioinformatics, Bioinformatics (2013)doi:10.1093/bioinformatics/btt476.
 August 29, 2013

 

2. Evelyn Sander and James A. Yorke,

A Period-Doubling Cascade Precedes Chaos for Planar Maps,

Chaos 23, 033113 (2013); http://dx.doi.org/10.1063/1.4813600

3. James T. Halbert and James A. Yorke,

Modeling a chaotic machine’s dynamics as a linear map on a “square sphere”,

Topology Proceedings 44 (2014) 257-284. (E-published on November 25, 2013)

 

 

 2014

1. David B Neale, Jill L Wegrzyn, Kristian A Stevens, Aleksey Zimin, Daniela Puiu, Marc Crepeau, Charis Cardeno, Maxim Koriabine, Aann E Holtz-Morris, John D Liechty, Pedro J Martínez-García, Hans A Vasquez-Gross, Brian Y Lin, Jacob J Zieve, William M Dougherty, Sara Fuentes-Soriano, Le-Shin Wu, Don Gilbert, Guillaume Marçais, Michael Roberts, Carson Holt, Mark Yandell, John M Davis, Kathleen Smith, Jeff FD Dean, Walter W Lorenz, Ross W Whetten, Ronald Sederoff, Nicholas Wheeler, Patrick E McGuire, Doreen Main, Carol A Loopstra, Keithanne Mockaitis, Pieter J deJong, James A Yorke, Steven L Salzberg, Charles H Langley,

Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies,
Genome biology 15 (3), R59 (2014)

 

2. Pine Annotation paper: 

Unique Features of the Loblolly Pine Pinus taeda L. Megagenome Revealed Through Sequence Annotation,

Genetics 196 (3), 891-909

Jill L. Wegrzyn, John D. Liechty, Kristian A. Stevens,  Le-Shin Wu, Carol A. Loopstra, Hans Vasquez-Gross, William M. Dougherty, Brian Y. Lin, Jacob J. Zieve, Pedro J. Martínez-García, Carson Holt, Mark Yandell, Aleksey Zimin, James A. Yorke, Marc Crepeau,§ Daniela Puiu, Steven L. Salzberg, Pieter de Jong, Keithanne Mockaitis, Doreen Main, Charles H. Langley, David B. Neale

 

3. AV Zimin, KA Stevens, …, J Yorke, C Langley,

Sequencing and assembly of the 22-Gb loblolly pine genome,

Genetics 196 (3), 875-890

 

4. Madhura Joglekar, Edward Ott and James A. Yorke,

Scaling of Chaos versus Periodicity: How Certain is it that an Attractor is Chaotic?,

PRL 113, 084101 (2014)   DOI: 10.1103/PhysRevLett.113.084101

Phys. Rev. Lett., (selected to be a PRL Editors’ Suggestion)

 

5. A new rhesus macaque genome for studies of expression, genetics and evolution, 

Aleksey Zimin1, Adam Cornish2, Mnirnal D. Maudhoo2, Robert M. Gibbs2, Xiongfei Zhang2, Sanjit Pandey2, Daniel T. Meehan2, Kristin Wipfler2, Steven E. Bosinger3, Zachary P. Johnson3, Gregory K. Tharp3, Guillaume Marçais1, Michael Roberts1, Betsy Ferguson4, Julien S. Gradnigo5, Etsuko N. Moriyama5, Howard Fox7, Todd Treangen6, Steven L. Salzberg6, James A. Yorke1, Robert B. Norgren, Jr.2,
Biology Direct

 

2015

 

1. E. Sander and J.A. Yorke,
The Many Facets of Chaos,

The International Journal of Bifurcation and Chaos (IJBC), in press (front cover)

 

2. Madhura Joglekar, Edward Ott and James A. Yorke,

Uncertainty in whether or not a system has a chaotic attractor,
Nonlinearity.

Accepted 1/1/15

 

3. Madhura Joglekar and James A. Yorke,
Robustness of periodic orbits in the presence of noise,

2015 Nonlinearity 28 697-711 doi:10.1088/0951-7715/28/3/697

 

4. Madhura Joglekar, Ulrike Feudel, and James A. Yorke,
Geometry of the edge of chaos in a low-dimensional turbulent shear flow model,
Physical Review E.

 

5. Marçais G, Yorke JA, Zimin A (2015)

QuorUM: An Error Corrector for Illumina Reads.

PLoS ONE 10(6): e0130821. doi:10.1371/journal.pone.0130821

 

Suddhasattwa Das and James A. Yorke,
Avoiding extremes using Partial Control
Journal of Difference Equations and Applications

 

Suddhasattwa Das and James A Yorke.
Super convergence of ergodic averages for quasiperiodic orbits

Suddhasattwa Das, Yoshitaka Saiki, Evelyn Sander, James A Yorke
Quantitative Quasiperiodicity,